;S

An Overview of the SETOPT Command Line Option Parser Generator
Gary Perlman

ATE&T Bell Laboratories
Murray Hill, New Jersey 07874

Abstract

SETOPT is a set of macros for generating C functions to parse command line options for UNIX
System (TM Bell Laboratories) commands. A simple language describes all the options allowed
with a program. Each option is defined by its name, purpose, data type, size, range, and other
information. This information helps generate program code to standardize the interface between
users and the program, and between the programmer and the parser. Programmers can assume a
perfect user interacting with their programs because on-line help and diagnostic messages tell
users what is available and makes sure that legal option values are supplied. Extra abilities
include generating summary documents and menu/form-filling interfaces.

The Problem

With no consistent syntax to UNIX System commands, people are bound to have problems
learning and using commands. UNIX System commands consist of a program name, a set of
options that control the behavior of the program, and arguments (usually file names).
Traditionally, these options are single characters preceded by a dash, and if a value is to be
supplied (logical true/false options take no values), it follows the option. For example, a simple
text formatter, tf, might have an option to delete leading blank space on lines (-d), and one to
control the width of lines (-w), and be called with options as follow.

tf-d -w 70

This syntax is a simplification because some options for UNIX System commands are multi-
character names, and some are not preceded by a dash. Some values for options immediately
follow the option name, while others are preceded by a space.

Hemenway and Armitage (1984) proposed a syntax standard based on an analysis of the
standard set of over 400 UNIX System commands. Their proposal included a set of 13 rules for the
syntax of commands and options and was meant to insure the consistency of commands developed
in the future, and to guide the gradual migration of old commands toward a standard. Software
to aid programmers in following the standard was recommended.

The published aid to parsing command line options, getopt, has some differences with the
Hemenway and Armitage (1984) standard, but with some minor modifications, it could be
consistent with the proposed syntax. To use getopt, programmers supply the names of the options
and the ones taking values. For example, the string "abx:y:” defines two logical options, a and b,
and two taking values, x and y. This getopt string is passed as an argument to the getopt function
along with the unprocessed command line options, and getopt returns each option and its value (if
appropriate) one by one. getopt’s sole purpose is to help parse the command line options.

The user interface provided by programs using getopt depends on programmer efforts. No
standard on-line help nor diagnostic messages are provided; programmers must write their own.
Programmers are also required to write code to check the data type and range of values supplied,
and do any conversions and assignments of the basic string-type option values to internal variables
of type integer, real, and so on. Many programmers do not do a good job at these tasks, leaving
values unchecked or providing inconsistent error messages. Most do not do them all.

Presentation at the 1984
Winter USENIX Conference
Dallas, Texas.

Published in the conference
proceedings by USENIX Assn.

The Solution

SETOPT is a collection of text generators written in the macro text processmg language m4
(Kernighan, 1983). SETOPT helps programmers deal with command line options. A simple
language describes the attributes of each option for a command, and this specification is expanded
into C language functions to automate most of the tasks mvolved in dealing with optlons The
user interface provided by SETOPT is one that allows users to request help with optlons, gives
diagnostic error messages when supplied values are incorrect, and promotes a consistent syntax
that users have to learn once. The interface to the programmer allows the programmer to call the
generated parser once, and when it returns, an error is reported, or the options are known to have
been validated and set.

The language describing command line options is based on the interface language used by
the S system for data analysis (Becker and Chambers, 1984). The S system uses a command
language in which each option to a function has a name, a data type (like integer, or character), a
size, a default value, whether it is required or not, and some other information. While the syntax
for UNIX System command line options is different, and the requirements for the options differ, the
S system interface language makes sure that options are correct, and that is the most basic goal of
an option parser. SETOPT is more advanced than the S interface system in that it allows more user
interaction and on-line help.

The SETOPT option specification language is based on two macros:

PCGM(NANE, HELP, PROCESS)
OPT(PLAG, VAR, HELP, TYPR, SISE, DEFAULT, TEST, ACTION)

written using the general purpose m4 macro pre-processor (Kernighan, 1983). The PGM macro
specifies the name and purpose of the program, and the data type of arguments processed by the
program; these are used in on-line help and error messages. The OPT macro specifies the
attributes of UNIX System command options for the program.

FLAG A single character name for the option to be used by the program user. This is
checked by SETOPT to make sure it conforms to the standard of being
alphanumeric.

VAR A program variable that will be set by SETOPT to be used by the programmer. This
is used to name a component in a data structure that contains all the options.

HELP A short phrase describing the option.

TYPE The data type of the option. It can be ore of: logical, string, character, integer,

real, file, directory, date, time.
SIZE A size of zero implies a scalar value while larger values imply an array of values.
DEFAULT The default value of a scalar option if the user does not specify it.
TEST An expression to test the validity of a supplied option value.

ACTION Actions implied by setting an option. For example, setting one option often implies
other are set.

These option description parameters evolved with use of SETOPT. For example, new data
types were added as their need became known, and others might be added. Also, some
parameters have been added (e.g., implied actions) after it was realized that their inclusion would
reduce programmer effort. Other parameters that might be supported in the future include a way
to require certain options be set and allow pre-validation transformations (e.g., mapping to
upper/lower case to allow for more general date formats).

The programmer describes all allowed options and runs a SETOPT program to generate a
function to parse those options. Generating a parser has advantages over having a single parsing
function to handle all possibilities. The generated parser is as compact as possible to deal with the
data types and ranges of options particular to a given program. A parser that could check all
kinds of data types and test range validity with a variety of expressions would be large and
adversely affect portability to small systems. With a generated parser, if specific types of options,
say dates or times, are not used, then code to test for them need not be generated. Generated
code uses compiled validity test expressions, which are faster than any interpreted function. This
is not a large saving because command line option parsing is done once, and for a few options.
The real saving is the space that an interpretive expression evaluator would take.

When the programmer calls the parser, usually the first statement in a program, several
activities take place before it returns.

* Each option and any value are taken from the command line.
* The option is checked to make sure it is recognized. If not, an error message is printed.

* If it takes a value, SETOPT checks io make sure there is a value supplied. An error message
indicates when an option value is missing.

* The type of the value is checked. An message indicating the correct type is printed for invalid
inputs.

* The option, in the string format typed by the program user, is converted to the correct type
format and assigned to the program variable named in the option specification language. This
variable is an entry in a structure defined in a header file created by a SETOPT generator.
Access to this structure is done with macros to simplify the programmer's task and guard
against possible changes in the structure standards.

* The validity (for example, range) test is applied to the converted value. If there is an error,
the value is reset to the default value after an error message is printed.

* Any implied actions, like assignments, are made.

If an error is detected, a standard error message is printed naming the program and the
problem. Inappropriate actions are not taken after an error; for example, implied actions take
place if all previous activities were error free. When errors are detected, a negative value is
returned by the parser. Usually, the program will exit after an uncorrected error. Note the detail
required to deal properly with just one option, and the need for a programmer’s attention to make
sure that error messages conform to standards. Besides making the parsing task easier for
programmers, SETOPT makes sure that option handling is high quality.

SETOPT provides several built-in options available in every program. Some of these are
hand programmed into many programs.
help Get on-line help about the attributes of all the options.
synopsis Get a short synopsis of the command usage.

version Get the version date of the program options.

set Set options interactively. This combines with on-line help to provide a menu interface.

read Read options from a file.

done Signal the end of options. This is part of the syntax standard and allows program
arguments (like files) to begin with a dash.

exit Exit from the program.

shell Temporarily leave the program to run another program.

chdir Change the working directory of the program.

Because any effort put into SETOPT affects all the programs using it, the large programming
task of adding many built-in options is economical.

Additional Features

SETOPT is designed to allow simplified versions for aesthetic, security, or program-size
reasons. The generated parser has program code for all the operations described in this paper,
but not all have to be compiled into the final program. Along with the parsing program code are
special control statements (for the C compiler pre-processor) so that the programmer can
independently control at compilation time whether on-line help is to be supplied, options can be
set interactively or from files, or option values are checked.

SETOPT can help document programs by generating summaries of options based on the
option specification language. Even programmers who take the time to write documentation find
it is difficult to keep the documentation up to date with the program code, and often, important
details are omitted. When the option parser and the documentation are generated from the same
source, as in SETOPT, the documentation is guaranteed to be accurate. For the parser, SETOPT
generates C program code, while for the documentation, SETOPT generates text in the troff text
formatting language used on the UNIX System. Part of an example manual entry is shown at the
end of the paper. A collection of target languages, including a user interface programming
language (Vo, 1984) that provides a menu and form-filling interface to programs, are possible and
have been prototyped.

Conclusion

SETOPT provides programmers with a tool for handling command line options for UNIX
System commands. People using SETOPT-based programs benefit from a consistent user interface
with standard built-in option and standard error messages. To the extent that the same
conventions are used in a large set of commands, people will find programs easier to learn and use;
there is activity to standardize the user interface of all UNIX System commands. From the
programming perspective, programmers are spared the tedious programming of the routine chores
of parsing and checking options and providing on-line help and error messages. They do not have
to worry about meeting any syntax standard because SETOPT generates parsers that follow the
Hemenway and Armitage (1984) standard. In addition, programmers are able to generate up-to-
date user documentation with minimal effort.

An Example

The example below shows part of the option specification for a simple text formatter.
From this compact description, about 400 lines of parsing code are produced, resulting in a
substantial time savings for programmers. With no extra effort, all the information is available to
users in a more humane format, both on-line and in standard UNIX System manual format.
Removed from the example is supplementary text, added by the programmer, to make the manual
entry more informative. Some of this is shown in the sample manual entry at the end of the

paper.

PCM(tf, S8imple Text FOrmatter, FILES)

OPT(b, breaklines, Break ALL Lines of Text)

OPT(¢c, center, Coenter Input Lines, LGL, O, FALSE)

OPT(d, delspace, Deilete Space Around Lines)

oPT{(i, indent, Indent Output Lines, INT, O, O, value >= 0)
OPT(Jj, jJustify, Justify the Right Margin)

OPT(M, number, Number Output Lines, LGL, O, FALSE)
OPT(p, paginate, Paginate Output)

OPT(s, spacing, Output Line 8pacing, INT, O, 1, value » 0)
OPT(t, tads, Adbsolute/Relative Tab 8tops, INT, 20)
OPT(w, width, Width of Cutput Lines, INT, O, 72, value > 0)

Availability

SETOPT was developed at AT&T Bell Laboratories and they retain the rights to its
distribution. Their plans for SETOPT are not known. Since leaving Bell Labs, I have been
developing a new version of SETOPT based on the details in this publicly released paper. If AT&T
does not force the issue, I will be happy to distribute the macros for the parser and manual entry
generators. These macros depend on the version of m4 distributed with UNIX System V, although
a version may be possible without the dependence on its new features.

In the meantime, | recommend using the simple getopt command line option parser. It will
help standardize the user interface of your programs and it will help structure your code so that
migration toward the Hemenway & Armitage syntax standard or toward an advanced parser like
SETOPT is simplified. Although part of System V, there are public domain versions of getopt that
have been posted to the UNIX System network.

Change of Address
More information about SETOPT can be obtained from me at my new address:

Professor Gary Perlman

Wang Institute of Graduate Studies
Tyng Road

Tyngsboro, MA 01879

(617) 649-9731

wivax!perlman or sdcsla!periman

References

Becker, R. A. & Chambers, J. M. (1984) S: A Language and System for Data Analysis. New
York: Wadsworth.

Kernighan, B. W. (1983) m4: A Macro Preprocessor. Standard UNIX System documentation.

Hemenway, K. & Armitage, H. (1984) Proposed Syntax Standard for UNIX System Commands.
Paper presented at the 1984 Winter USENIX conference, Washington, D.C.

Vo, K.-P. (1984) Integration, Interaction: The IFS Approach. Paper submitted to the AT&T Bell
Laboratories Technical Journal.

TF(1) UNIX Programmer’s Manual TF(1)
NAME
tf Simple Text Formatter
SYNOPSIS
tf [-bedjnp] | i indent] [s spacing] | ¢ tabs] [w width] [} [fles]
SUMMARY
Optlon Purpose Default Range
-b Break ALL Lines of Text FALSE
- Center Input Lines FALSE
—d Delete Space Around Lines FALSE
-11 Indent Output Lines 0 value D=0
| Justify the Right Margin FALSE
-n Number Output Lines FALSE
-p Paginate Output FALSE
-1 Output Line Spacing 1 value > 0
-t I20 Set Absolute/Relative Tab Stops
-wl Width of Output Lines 72 value > 0
DESCRIPTION

{f is a simple text formatter. It formats plain text files by filling, spacing, indenting, numbering,
centering, or setting tabs based on program options. This program has ail the options, almost.

{f processes the named files, but if no files are specified, the standard input is read. If a single
dash is supplied as an argument, the standard input is read there; this allows inserting the stan--
dard input into a list of files.

OPTIONS

The following options are allowed with ¢f. Options should be flagged with a dash () followed by
the option character. If the flag takes a value, then it should be the next string on the com--
mand line. In the options below, option characters followed by a letter take values. 1 flags are
followed by an integer. Logical flags (TRUE/FALSE variables) take no values.

{f begins by reading options in a file in your login directory called .setopt/tf (if its exists). Each
line of this file should begin with an option character followed by a value, if appropriate. Do not

use the flag option indicator (). After reading the option file, options on the command line are
processed.

Detalled Deseription of Optlons
< detail omitted>

7th Edition Fri Dec 14 20:10:27 EST 1984 1

