
Multilingual Programming: Coordinating Programs,
User Interfaces, On-Line Help and Documentation

GARY PERLMAN

School of Information Technology
Wang Institute of Graduate Studies

Tyngsboro, Massachusetts

ABSTRACT

The high cost, of software is not due to the difficulty of coding,
but in recoding and redocumenting software. This can be
better understood when one considers how many expressions of
the same ideas must be constructed and coordinated. Program
code and comments, user interface and on-line help, and a
variety of off-line documents, all must be consistent. A solution
to the coordination problem is presented in this paper.
Multilingual programming is a method of developing software
that uses a database of information to generate multiple target
languages like commented program code, user interface
languages, and text formatting languages.

The method begins with an analysis of a domain to determine
key attributes. These are used to describe part.icular problems
in the domain and the description is stored in a database.
Attributes in the database are inserted in templates of idioms
in a variety of target languages to generate solutions to the
original problem. Because each of these solutions is based on
the same source database of information, the solutions
(documents, programs, etc.) are consistent. If the information
changes, the change is made in the database and propagated to
all solutions. Conversely, if the form of a solution must,
change, then only the templates change. In sum, the method
saves much effort for updates of documents and progra.ms that
must be coordinated by designing for redesign.

CONTENTS

Problems with Documentation
Examples

Experimental Design Specification
Data Bases of Bibliographic References
Data Analysis System Interface
Option Parser Generator
Electronic Survey System

Formalization
Abstractions
Idiomatic Templates
Database of Attributes
Multiple Target Languages
Template Macros

Properties of Multilingual Prbgrams
Generalization & Imagination
Flexibility and Resilience to Change
Accuracy and Consistency
Economy of Expression

Discussion
Choosing the Appropriate Focus
Multiple Views of Programs
Natural Language

Cost/Benefit Analysis
References

PROBLEMS WITH DOCUMENTATION
There are many types of text associated with software:

(a) the program code for the software, (b) the comments in the
code, (c) the user interface specification, (d) on-line error
messages, (e) on-line documentation (f) off-line reference
materials, (g) off-line quick-reference sheets, and probably
others. A major problem with software documentation is
maintaining accuracy and consistency. Accuracy is Lhe
coordination of the program code with all other forms of
documentation. Doea the documentation accurately reflect the
input/output behavior of the program? Consistency is the
similarity of related document parts. Are ezamples, options,
etc., shown in the consistent formats throughout? These are
not easy problems to solve. Here is atypical scenario:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM 0-89791-186-5/86/0600/0123 $00.75

A program is designed and written. Commenta
are inserted into the program. Preliminary
docwmenfation for the program is written, and
users give feedback to the developers. New
features are put in the program, and yome, but
not afl, of the comments in the code are updated.
Some prompts and error messages in the user
inter/ace are not changed to reflect the workings
of the new program. New documentation ia
written, after which some user interface prompts
are modified. The program is shipped to market.

I contend that the problems of accura.cy and consistency
can be traced to the wasted dual efforts of programmers and
documenters. Traditionally, documentation by programmers
have been viewed as inefficient for several reasons:
(a) Programmers do not think documentation is their problem.
(b) Programmers a.re not interested in writing documentation.
(c)Programmers do not have the time, or their time is
considered too valuable, to be writing documentation.
(d) Programmers do not know how to write good
documentation. These are some of the same reasons why
programmers are viewed as inefficient workers on user
interfaces (Perlman, 1983). Consequently, programmers do not
write documentation, except for program comments, and
technical writers are hired to write user documentation. Two

123

groups of people work on specifying the same information in
different formats for different audiences. Programmers write
for compilers and programmers that might work on their code
in the future, and documenters write for a variety of user
populations. It is a waste of effort to have different people
spend their time expressing the same idea in different
languages.

This paper presents some practical solutions to the
problem of accuracy and consistency of documentation. I will
not talk about documentation separated from the issues of
programming, user interfaces, or on-line help. These problems
must be addressed in a coordinated fashion.

EXAMPLES
With the following examples, I hope to convey the diverse

applications of multilingual programming by showing its use in
a variety of domains. The technique cab be sum&&d as
follows: We begin with anakais of the nroblem domain.
breaking it into-small parts. Then we use’ this analysis to
describe a particular problem. At that point, there is an
abstract description of the problem. We then ayntheaize the
description into a solution. Because we have a point at which a
problem is described abstractly, we can synthesize several
solutions.

While the above is abstract, it can be further summarized
as analysis followed by multiple syntheses. In the foIlowing
examples, this pattern is the one to watch for. The method
will be formalized later.

Experimental Design Specification

UNIX$TAT (Perlma.n, 1980) is a compact data analysis
system developed at the University of California, San Diego,
and a.t the Wang Institute of Graduate studies, running on the
UNIX operating system (Ritchie & Thompson, 1974). anova,
a UNIXISTAT program, does a general analysis of variance.
For non-statistically trained people, that means it is used
primarily for analyzing data collected from experiments with
controlled factors. Traditional ANOVA nroarams (Dixon. 1975:
Nie et al, 1975) require that data be inp;t & a matrix and the
description of the experimental design information is in a
special language separate from the data. In my experience,
this method of experimental design specification leads to
confusion and errors when used by inexperienced analysts. The
anova program was designed to read self-documented input
and from that, infer the structural relationships (the
experimental design) in the data.

Each input line to anova contains one da.tum preceded
by the names of the level of factors at which that, datum was
obtained. For example, suppose we have an experiment testing
the effectiveness of two display formats, B&W and color, to
two classes of readers, young and old. We present both
formats to each reader, and measure comprehension on a
percentage scale. Some of the data might look like this:

Ban&m B&w Young 52
BamBam color YOuw 78
E-red color old 25
Pred B&W old 75
Pebbles color Young 83
Pebblcrr B&W YOUg 65
Wilma Bsw old 93
Wilma color old 58

anova takes this analysis and infers the experimental design
by synthesis. There are several points worth noting in the
data. (1) The order of input lines to anova does not matter.
(2) Each line is close to self explanatory; we know that Fred is
old and what his scores are for the B6W and color format
conditions. (3) From the data, we can see that every subject
saw both format conditions (it is a w3hin au&ejects factor), but

no subject was both young and old (age is a between
subjects /actor). (4) There were four subjects.

The idea behind the anova program is to remove
tedious and error prone tasks from data analysts by providing a
synthesis of analysis. Given this design information, much of
the data analysis process can be automated and verified
(Perlman, 1982).

Data Bases of Bibliographic References

The references to this paper are stored in a simple
da.tabase. The format for a record looks something like this:

author I Perlman C
article - Multilingual Programming
journal = Asterisk
date = in press

Records are extracted from a centra.1 database and sorted
before being formatted for input to the troff text formatting
system (Kernighan. Lesk. Bs Ossanna. 1974). There are several
types of publycation records in the database: books, journal
articles, articles in edited books, technical reports, and so on.
For each publication type, a different format is required. The
references in this paper are printed in APA format (APA,
1983). Two properties of the formatting might change: the
output format, or the text formatter. For example, the ACM
uses a different format, and Scribe (Reid & Walker, 1980) and
TEX (Knuth, 1979) are other text formatters.
personal database system,

With my
it is a simple translation of one

format t,o another, or of one formatter to another. Templates
defining how the records (analysis) are formatted (synthesis)
are simply redefined. Again stepping back for an overview,
this is an example of analyzing a. problem into simple parts,
a.nd synthesizing several different solutions.

Data Analysis System Interface
s is a system and language for data analysis (Becker &

Chambers, 1984). While at Bell Labs, I developed a high-level
user interface to the S language using the IFS (Vo, in press)
user interface language. s is a large system, with over 300
functions, each with about 3-6 options. The system I built
(Perlman, 1983) has a screen with a form and a menu for every
s function; the menu controls the invocation of the function
and the form allows users to supply options. There are over
100 menus arranged in a hierarchy to help users find the
functions of interest. In all, there are close to 500 screens,
ea.ch with menus or forms, and on-line help. In developing this
system, I pushed the idea of multilingual programming to its
limits, only to find out it was more powerful than I had
anticipated.

It was clear to me that programming 500 screens by
hand, even with a high level language like IFS, was going to
present, problems. User interface design is an iterative process,
and if each iteration involved changing hundreds of files
containing screen descriptions, then it would be impossible to
make many changes. Early in the development, I decided to
design a special purpose artificial language (Perlman, 1984)
especially suited to designing screens in the IFS language. An
artificial language is a special purpose notation for precise and
concise communication within a limited domain. My goal was
to be able to specify the screen designs with as little syntax as
possible. In the words of Tufte (1983) I wanted to minimize
the “ink to data” ratio and specify only the information that
changed from screen to screen. I did not want to repeatedly
specify the formatt.ing information because it would have
wasted my (time and made it more difficult to maintain
consistency.

Becker and Chambers had already done much of my
work by designing the S interface language using the 1n4
macro processor (Kernighan &, Ritchie, 1980). The S interface

124

language defines various att,ributes of S functions and their
options. The most notabIe are the attributes of options
including: (a) name: the name of the option, (b) type: the data
type of the option value, (c)size: the dimensions of the
option’s value, (d) default,: the default value, and
(e) requirement: whether the option was required or not.
Oiher information, such as the allowable range of options, is
coded algorithmically. Becker and Chambers write this
information in a dialect of m4 and use m4 macro definitions to
generate RATFOR code for input to a compiler. The format
of x114 macros is simple: a macro name is followed by a
parenthesized list of comma-separated arguments. For
example, the following is an option to the S plot command.

ARG (main, OPTIONAL, CHAR)

In English, the main title of the plot is an optional character
vector with no default value.

Missing from the information in the S interface la.nguage
is on-line help about the purpose of the functions and options.
I had to add this information from the S documentation by
hand 60 build the high level interface. Once this was done, all
the information about the S functions was parameterized
(analyzed) and centralized.

The generation of the screens is straightforward, but
cont,a.ins many details. For each function, in an S interface
language source file, there is a definition of its name, purpose,
etc., and the attributes of its options. This is a relational
database of informat.ion about each function and their options.
From these, m4 macros are defined to parse the information so
that it is available to a code generator. The code generator
takes this informat,ion and extracts what it needs for different
parts of the screen design. The following parts are generated:
(1) declarations: Options are represented as variables that
have to be declared. (2) titles: Forms and menus have
prompts based on the names and short descriptions of options.
(3) help: On-line help is extracted from the S manua.1 a.nd
coordinated with the screen designs. (4) validation: Inputs
are validated based on the dat,atype and range of options, and
required options must be supplied before a function is allowed
to run. In short, each piece of information about each function
is used several times in several contexts.

The code generation can be summarized as follows.
Several sources of information are integrated into one
consistent database. Information from this database is parsed
with m4 and used to fill in the blanks of idiomatic templates
(ie. macro definitions) in the IFS langua.ge. The same
information is used more than once, for help, validation, and
for decla.rations, but each dat,um comes from one source, thus
ensuring consistency.

The result of using m4 macros to design and implement
the IFS/S interface was beneficial many times over.
(a) Generalization: As an abstract notation, it allowed me to
see more relationships than otherwise would have been
possible. (b) Abbreviation: As an abbreviated language, it
saved much typing (for custom fixes) and reading time.
(c) Consistency: As a single source for the design, it allowed
extremely consistent development. If a change were made in
the design, that change was centralized in the templates, and
only a regeneration process was necessary. (d) Flexibility: By
localizing all the IFS specitic language in the macro definitions,
much flexibility was gained. During the IFS/S interface
development, IFS itself was under development, and several
times the IFS language changed so that the whole system was
corrupt,ed. Only the macros had to be changed to reconfigure
the system, not 500 screen designs. This would have been
non-trivial because the generated screen designs contained an
average of 400 lines of IFS code, or a total of about 200,000
lines. The screens were so long because additions to the design
were centralized with a one time cost for each addition; each
effort on a screen was repaid by being multiplied by several

hundred screens.

Because the IFS code was separated from the description
of the functions, macros could be written to generate text in
other languages. This was used to create a variety of paper
documents, using the troff text formatter, full and quick
references, each in a few hours. There was no problem of the
accurclcy of these document,s because they were generated from
the same source as the user interface, which was generated
from t.he program code. There was no problem with the
consistency of these documents, again because they were all
generated with the same macros. Such standardization is
especially impressive with such a large system and such
detailed documents (some were about 100 pages with indexes
automatically generated).

Option Parser Generator

SETOPT is a code generator that produces a parser to
handle UNIX program command line options (Perlman, 1985).
UNIX program opt.ions are wildly inconsistent, and the efforts
of Hemenway & Armitage (1984) to define a syntax standard
were accompanied by the development of SETOPT to help
develop compliant programs. In addit,ion to ensuring a
consistent syntax for command line options, SETOPT deals
with on-line help, type checking, input conversions, a.nd range
checking. In short, SETOPT aids all aspects of programming
command line options on UNIX.

With SETOPT, each option is described with a list of
attribut.es in a format convenient for input to m4 (Kernighan
62 Ritchie, 1980), a ma.cro processor. For example, a simple
text formatting program might take options to control the
width of lines, whether lines are numbered, and page headers.
With SETOPT, the following could be used to specify these
options.

OPT (w, width, Line Width, INT, 0. 72, value>O)
OPT (n, number, Line Numbering. LGL, 0, FALSE)
OPT (h, header, Page Header, STRING, 0, "-1

length(value) < optval(ridth))

This analysis of the options states that the width option is an
integer of dimension 0 (a scalar) whose default value is 72’
and whose minimum value is 0. It is set with the -W flag, and
its purpose is to set t.he line width. Note in the previous
English explanation how the parameters of the OPT macro can
be plugged int.o a troff (Kernighan, Lesk & Ossanna, 1978)
temp1at.e to provide detail. The same information is used by
SETOPT to generate a C language (Kernighan & Ritchie,
1979) parser for handling all aspects of the users interface:
(a) parsing the options on the command line, (b) validating
options and providing standardized error messages, (c) allowing
access to on-line help, (d) allowing interactive setting of
options, and several other capabilities. Like the IFS/S
interface, much effort can be expended because the SETOPT
tool can be used with hundreds of UNIX programs.

Again, the process is the same as with the other
examples. A domain of application is chosen and analyzed so
that the problems in the domain are parameterized. This is
the analysis stage. This information is in a database from
which several solutions can be synthesized. The synthesis is
done by plugging information from the database into templates
in different languages: with SETOPT, troff macros to
generate UNIX manual entries, and C program code to
produce a user interface.

The manual entries generated by SETOPT are not
complete: nor what I would call great prose. SETOPT
provides a simple scheme to insert explana,tory text in different
parts of the generated document. It is difficult, but not
impossible, to generate smoothly flowing text. Computer
program documentation, especially that on program option
attributes, does not need to read like great prose.

125

Electronic Survey System

Surveys for gathering information can be described with
a simple grammar. In an electronic survey system (Perlman, in
press), survey questions are represented as having four basic
attributes: (1) variable: a variable t,hat is set by answering a
question, (2) prompt: a prornpt that is presented t.o a
respondent, (3) help: more detailed information, available on
request, shout the requirements for the answer, and (4) type:
the type of survey question (e.g., multiple choice, rating scale,
etc). Based on the question type, other parameters might also
be supplied. For example, a minimum and maximum value
might be supplied for a Thurstone scale question of the form:

Rate on d scale from minimum to maximum.. .

Ba.sed on these parameters, a question database is
constructed, and from it, C program code (Kernighan &
Ritchir, 1979) is generated to administer the survey. By
changing the templates from which the program code is
generated, troff text formatting commands are used inst,ead
to generate a paper survey. Work is underway to generate a
form based survey system using the Rapid/USE prototyping
tool (Wasserman, 1979). In summary, several different
synthetic solutions to problems are formed from the same
anslvsis.

Figure 1

text algorithmic
formatter language

UIMS

troff, TEX C. Pascal Rapid, IFS

dot, table program form, menu

FORMALIZATION
Each of the previous five examples show the same

process, depict.ed in Figure 1. First, an abstraction of a domain
is used to analyze a problem. This analysis results in a source
database of information representing the problem from which
solutions can be constructed by synthesis. The information is
plugged into idiomatic templates to generate instances in
several classes of target langua.ges: text formatters,
programming languages, and user interface management
systems; hence the name multiLzgtial programming. For each
class of target language, there are several possible specific
languages. The results of the syntheses can include program
code, program comments, user interface code, on-line
documentation, a.nd off-line documentation. In this section, I
will attempt to describe multilingual programming more
formally.

Figure 9 is a gra.phical representation of the process of
multilingual programming. At the top of the Figure are two
shapes representing instances in a specific subject domain. An
analysis of the instances shows that each has five key concepts
in the domain. This pattern is formalized and t,he information
from those five key concepts is extracted and parameterized in
a relational database (depicted in the center of Figure 2) to
form one source of the information. From this database,

several different views or sdutions are possible, each being a
synthesis of the information in the database, shown at the
bottom of Figure 2.

It is not necessary that aI/ information in the database be
used in forming a synthetic view. In declaring variables in a
programming language, a help striag is not necessary, although
it is customary to put that information in comments next to
the code that is generated. The synthesis on the lower right of
[!e;re 2 does not contain the information shaded with vertical

Is is possible to use the same information (always from
the same source) more than once. In generating printed
documentation, it is a good idea to provide several levels of
detail: (1) quick reference, (2) a table of attributes, and
(3) detailed information. The same information might go into
each of these, although more would go into the det,ailed
documentation.

When real systems are being developed, these views
evolve through an iterative elaboration and refinement process.
Consider the development of a user interface system. The
templates might begin by scavenging an existing piece of code,
parameterizing some parts. A first generation user interface
might not check ranges of input values. A second generation
user interface might check ranges, but not provide diagnostic
error messages. The flexibility of the method of multilingual
programming allows developers to address unanticipated needs
flexibly and gradually work toward a better system. Note that
all the while, the consistency of the system is maintained by
generating text based on a single database with the same
templates. Change is localized in the templates, thus
minimizing effort.

t26

In describing Figure 2, I did not tell how one would
notice that several instances share common concepts. 1 do not
know how this can be done in general, except by experience. It
was only after writing the troff text commands to format
hundreds of references that I noticed I was wasting my time
doing the same action repeatedly and that changes in format
would be difficult. With experience with similar tasks, a
person’s performance improves, which is a hint that repeated
actions can be automated.

A template is an abstraction of an idiomatic pattern of
text that frequently occurs in a specific i,arget language like a
text formatting or programming language. Templates have
slots where variables are inserted to form instances in the
target language. For example, in the C programming
language, a programmer might define the square root funct.ion
like this:

/* sqrt: square root +/
double sqrt (x1
double x; /i must be non-negative l /

The documentation for sqrt might look like this:

TYPE COMMENT
FUNCTION aqrt double square root
ARGUMENTS

I double must be non-negative

and could be based on some troff formatting macros (that
would be defined elsewhere) like these:

.FN "sqrt" "x" "double" "square root"

.AG "x" "double" "must be non-negative”

The idiomatic templates for each language abstract the parts
that remain ccnstant across uses. Note that they contain the
same information plugged into different, but corresponding
slots.

c:
I* purpose */
type junction (arguments)
type argument; /* comment +/

troff:
.FN “junction” “arguments” “type” “purpose”
.AG “argument” “type” “comment”

The information from the previous example can be
parameterized by analysis using a set of attributes:

function = sqrt
purpose = square root
type - double

argument = x
type = double
comment = must be non-negative

and put into a database with two relations, one for functions
and one for arguments. This information is target-language
independent, somewhat object oriented, implying that a person
does not need to know the syntax of any language to program
or write documentation when programming multilingually.
Information needed for code generation or documentation can
be extracted and plugged into slots in templates. Language
specific syntax information is held in the templates.

It can be difficult to write text, especially phrases, like
the purpose and comment above, because the same
information will have to fi;t into many templates. There is
some virtue in the difficulty, because it forces using consistent
formats (e.g., the tense and voice must agree).

. yes
Once information is in a da.tabase, many views of the

dat.a.base are possible. It is only by changing the definitions of
the views, by modifying or substituting the templates, that
different target languages can be generated. Each of these
target languages is based on the same source of information,
and so is consistent with the others.

It is not mandatory t.hat macros be used to implement
templat.es. There are several reasons why macros are
preferable to more common language extensions like functions.
(I) When macros are used, it does not matter if the target
language has a function definition capability. Macros can be
used to extend any language. (2) Macros do not need to adhere
to the syntactic rules of the target language. Default values
can be inserted to function calls, and variable names and
values can be combined with string operations. (3) Macros are
easier to write than more complex text generators like
compilers. (4) General macro processors, like the 1n4 macro
processor (Kernighan & Ritchie, 1980) offer all or most of the
capabilities needed for building templates. m4 supports macro
definition, parsing of parameters, string manipulation, condition
testing, iteration through recursive macros, and arithmetic.

Macro processors like m4 are not without their problems.

The Quoting Problem. The recursive evaluation of
macros makes the quoting problem difficult to master. It can
take a long time to learn how to get nested recursive macros
substituted (to avoid quoting) and how to de1a.y or stop t.he
substitution (to use quoting).

Pretty PIlmtim, 0. The output from macro substitutions
contain everything in the definitions of the macros. This
includes any white space used to make the macro definitions
more readable. So unlike most programming languages,
structured macro writing style conflicts with functionality,
especially for templates of text formatting languages for later
human viewing. The solution seems to be to use a post-
processor, a prettyprinter, to reformat the macro processor
output for input to a target language processing system.
Luckily, this usually involves just stripping off leading space on
lines and removing blank lines.

Properties of Multilingual Programs

The following quote of Whitehead (1911) leads into one
advantage of multilingual programming.

By the aid oj symbolism, we con make transitions
in reasoning almost mechanically bye the eye,
which otherwise would eall upon higher faculties of
the brain. By relieving the brain of all
unnecessary work, a good notation Jets it free to

concentrate on more advanced problems.
(Chapter 5)

By parameterizing problems by analysis, a notation is
established, and our ability to see new relationships and form
new syntheses is enhanced.

e to w

A small change in a program, such as changing the t,ype
of a variable from an integer to a real should not require a
huge effort. Most current practice requires many cha.nges:
(1) the declaration, (2) the program comment, (3) the user
interface to read the variable, (4) on-line help and error
messages, and (5) user manuals. It is not surprising that most
of the cost of software is in maintenance and modifications to

t27

working software. Multilingual programming provides a
method for making software more flexible, allowing people to
design for redesign.

Multilingual programming is resilient to changes of
standards a.nd softwa.re tools. Personal experience taught me
this well. While working on a system written in a user
interfacelanguage, the definition of the user interface language
changed, leaving me with hundreds of thousands of lines of
unworking code. Because I had generated the user interface
tangusge from a database, I replaced many hours of work by
some minor changes to some templates.

Much of the documentation and many program
comments I read are inaccurat.e. This could be attributed to
carelessness, but I think that would avoid confronting the
problem. Text (comments and manuals) written about other
text (program code), by hand, is going to lag behind, and
updates can be forgotten. Also, text written about other text,
by hand, can be inaccurate because people make different
inferences from the same information. The method of
multilingual programming promotes accuracy by automating
the updates and removing chances for misinterpretation.

Once a document (user iuterfa.ce) exists, it meets or sets
a standard format for related documents (software). The
format of related documents (user interfaces) should be
consistent so that people can learn based on their experience,
not in spite of it.

Finally, multilingual programming supports abbreviation.
Information in a database is about as abbreviated as possible,
this information is croaaed, in the set theoretical sense, with
templates for each language, thereby multiplying productivity.

DISCUSSION

Hester, Parnas, & Utter (1981) suggest that
documentation of systems should precede any development,
and others have suggested that user interfaces should be
designed first. The motivation for writing documenta.tion first
is to write correct code efliciently, and the motivation for
writing user interface specifications first is to ensure that
programs are easy to use. These are good motivations, but
show how good ideas can compete for attention. The solution
is to work on both problems at the same time by analyzing the
problem so that documentation, user interfaces, code, and so
on, are treated as equally important parts of software products
that require coordination.

There are problems with choosing a target language,
documentation, programming, user interface, or whatever, as
the source of information for other target languages. For
example, writing documentation from program code is error
prone and expensive. When target languages are used as
source databases, they are almost always strained to
accommodate the other languages. For example, the writing
style tools of the Writer’s Workbench (Frase, 1983; Macdonald,
1983) use troff t,ext formatting macros as a text structuring
langua.ge and try to infer structure based on formatting
instructions. This is the opposite of the desired process, that
format should reflect content. Much of the time, this works
well, especially if writers use a high level set of macros
developed at Bell Labs, but sometimes writers find themselves
trying to fool the a.nalysis tools.

It does not make sense to put one part of a programming
system over another. Neither a good program with poor
documentation nor a bad program with good documentation

are accepta.ble. The implementation of programs, the
development of user interfaces, the writing of documentation,
all must be coordinated.

.
of PIQgrams

Knuth (1982) developed the WEB system that combines
program code with structured program comments so that both
can be extracted for input to his TEX formatter (Knuth, 1979)
or just the program code can be extracted for the compiler. It
is a system for printing beautiful program listings with
minimum programmer effort. While this process is similar to
the one described here, the WEB system does not use analysis
of problem domains to the same extent, nor does it allow for
the use of parameterized information for domains outside
programming, like documentation and user interfaces.

Natural langua,ge systems such as those of Schank (1979)
are a.ble to generate paraphrases of their inputs in several
languages. Although this is an impressive feat, the hard part,
according to Schank, is to understand the original input and
represent that information in a data structure. Once that is
done, the generation of paraphrases works on the same
principle as in this paper. In the examples described in this
paper, the problems of parsing the input is trivial compared to
those faced by cognitive scientists.

Cost/Benefit Analysis
In this final section, I try to answer the question When

does multilingual programming pay OfV Multilingual
programming requires planning on a larger scale than is
customary. To implement that plan, there is the overhead of
learning about generating templates. To offset that cost, there
have to be benefits. Multilingual programming is especia.lly
suited to large projects or ones where a consistent solution is
desired. Suppose that in a domain we have D documents
(bottom, Figure 2) like program text, manuals, etc., that
contain a total of A attributes (middle, Figure 2) to describe P
problems (t,op, Figure 2). If any of these is large, then
multilingual programming is more economic, but for different
reasons. The total number of solutions generated is P+D, each
of which has a size roughly proportional to A, making the size
of a multilingual solution proportional to P*D*A. The cost of
this is D times the cost of developing templates for each
document type, plus P times the cost of describing the
attributes of each problem. If P or D is small, then
multilingual programming may not be worth the trouble of
learning and enforcing the method. If P, the number of
problems, is large, then multilingual programming aids
flexibilitv for change and abbreviation. If A. the number of
attributes, is large, then multilingual programming aids
possibilities for generalization, flexibility for change, and
accuracy. If D, the number of documents, is large, then we aid
the accuracy of the documents, and help reduce human effort
by abbreviation.

REFERENCES
APA, (1983) APA Publication Manual. (3rd Edition).

Washington, DC: American Psychological Association,

Becker, R. A., & Chambers, J. M. (1984) Design of the S
System for Data Analysis. Communicationa of the
Association /or Computing Machinery, 27:5, 486495.

Dixon, W. J. (1975) BMD-P Biomedical Computer Programs.
Berkeley, CA: University of California Press.

Frase, L. T. (1983) The UNIX Writer’s Workbench Software:
Philosophy. Bell System Technical Journal, 62, 1883-
1890.

128

Hemenwa~, K., & Armitage, 11. (1984) Proposed Syntax

Standard for UNIX System Commands, In Proceedings
of the l-984 Sumner U8eniz ConJerence, Washington,
DC. El Cerito, CA: Usenix Association.

Hester, S. D., Parnas, D. L., & Utter, D. F. (1981) Using
Documentation as a Software Design Medium. Sell
System Technical Journal, 60:8, 1941-1977.

Kernighan, B. W., Lesk, M. E., & Ossanna, J. F. (1978)
Document Preparation. Bell System Technical Journal,
5‘7:8.2, 2115-2136.

Kern&an, B. W., & Ritchie, D. M. (1979) The C
Programming Language. Englewood Cliffs, NJ:
Prentice-Hall.

Kernighsn, B. W., & Ritchie, D. M. (1980) The m4 Macro
Processor. Murray Hill, NJ: Bell Laboratories.

Knuth, D. E. (1979) TEX and METAFONT: New Directions in
Typesetting. Bedford, MA: Digital Press.

Knuth, D. E. (I982) Literate Programming. Stanford,
California: Stanford Universitv. fRenort No. STAN-

” \ f

CS-82-981.)

Macdonald, A. H. (1983) The UNIX Writer’s Workbench
Software: Rationale and Design. Bell System Technical
Journal, 62, 1991-2008.

Nie, H. H., Jenkins, J. G., Steinbrenner, K., & Bent, D. H.
(1975) SEX: Statistical Package Jor the Social Sciences.
New York: McGraw-Hill.

Perlman, C. (1980) Data Analysis Programs for the UNIX
Operating System. Behavior Research Method8 E(
Instrumentation, 12:5, 554-558.

Perlman, G. (1982) Data Analysis in the UNIX Environment:
Techniques for Automated Experimental Design
Specification. In K. W. Heiner, R. S. Sacher, & J. W.
Wilkinson (Eds.), Computer Science and Statistics:
Proceeding8 oj the 14th Sympoaium on the Interface.

Perlman, G. (1983) The Interface Arsenal: Software Tools for
User-Program Interface Development. In Proceeding8
oj the .t983 Summer Useniz Conference, Dallas, TX. El
Cerito, CA: Usenix Association.

Perlman, G. (1983) The Design of an Interface to a Statistical
System. Murray Hill, NJ: Bell Laboratories.

Perlman, G. (1984) Natural Artificial Languages: Low Level
Processes. International Journal oJ Man-Machine
Studies, 20, 373-419.

Perlman, G. (1985) An Overview of the SETOPT Command
Line Option Parser Generator. In Proceedinga oj the
1985 Winter Useniz Conjerence. El Cerito, CA: Usenix
Association.

Perlman, G. (in press) Electronic Surveys. Behavior Re8earch
Method8, Instrumenta, d Computers.

Reid, B. K., & Walker, J. H. (1980) Scribe: Introductory (Jaer’e
Manual. Pittsburgh, PA: Unilogic.

Ritchie, D. M., & Thompson, K. (1974) The UNIX Time-
Sharing System. Communications oJ the Association
/or Computing Machinery, 17:7, 365-375.

Schank, R. (1979) Presentat.ion at the Second Annual
Cognitive Science Society Meeting.

Tufte, E. R. (1983) The Visual Di8play of Quantitative
Informatiorr. Cheshire, Connecticut: Graphics Press.

Vo, K. P. (in press) Integration, Interaction: The IFS
Approach. ATdT Bell Laboratories Technical Journal.

Wasserman, A. I. (1979) USE: A Methodology for the Design
and Development of Interactive Information Systems.
In H. J. Schneider (Ed.), Forma1 Models and Practical
Tool8 for Injormation System Design. Amsterdam, The
Netherlands: North-Holland. pp. 31-50.

Whitehead, A. N. (1911) An Introduction to Mathematics.
London: Oxford University Press.

Keywords:
Automatic Program Generation
Automa.tic Documentation
User Interface
Language Design

129

