Technical Bricfimg
Information Retrieval Techniques for Hypertext
in the Semi-Structured Toolkit

Gary Perlman

Computer and Information Science
Ohio State University

2036 Neil Avenue

Columbus, OH 43210-1277 USA
perlman @cis.ohio-state.edu

ABSTRACT

The Semi-Structured Toolkit (SST) is a C library that provides universal functions based on abstractions for storage
format- and data type-dependencies of semi-structured/frame-based information units. The SST provides searching,
sorting, viewing, and linking operations for data stored in its native formats, without requiring proprietary formats or
conversion. Hypertext capabilities such as linking and outlining are implemented in the SST with inverted indices
for each of the fields in semi-structured records. This paper describes the implementation of hypertext capabilities
in the SST.

KEYWORDS
Information retrieval, Underlying technologies, Hypertext, Indexing, Linking, Outlining, Open systems.

INTRODUCTION

In this paper I discuss some ways that indexes can be used to allow implicit links to be followed in large information
spaces. The use of indexes described here shows how the information in semi-structured information can be
exploited with minimal, if any, authoring effort.

PREVIOUS APPROACHES TO OPEN/IMPLICIT HYPERTEXT

Fountain et al [Fount90] discuss some problems of hypermedia systems that "act as possible barriers to the
creation, extension and integration of hypertext document systems.” They note the authoring effort required to
write or convert to hypertext, that hypertext systems are closed and do not work with other software, that
proprietary document formats make it difficult to use data, and that read-only media make it impossible for users
to make their own links. Systems like Apple HyperCard or OWL Guide store their links along with the data being
linked in a format that is difficult to process. In contrast, the approach taken in Microcosm [Fount90], like that taken
in many open hypertext systems (e.g., [Pearl89]), is to separate the links from the multimedia chunks of information
being linked. The effort invested in creating the linked information is not lost.

A different approach is taken in systems like SuperBook [Remd87], Document Examiner [Walk87], and NaviText
[Perl89] in which links (the names of link targets) are embedded in hypertext, but do not have a separate existence.
Instead, the links are traversed by searching an index. SuperBook [Remd87] and NaviText [Perl89] add structure to
a document with simple markup languages. Document Examiner [Walk87] have only one type of link, but supports
several views for it: linked information can be included at the source, a precis can be displayed, a note that the
cross-reference exists can be displayed, or the name of a topic can be implicitly inserted. All these systems
simplify the creation of simple links, adding functionality to links as they are traversed. They are not, however,
open systems that allow the separation of data from links.

LINKING USING EXISTING IMPLICIT LINKS

The approach taken in the Semi-Structured Toolkit (SST) hypertext capabilities is a combination of the above
approaches. Data can be maintained in its native format, and existing implicit links are recognized in the text. (By

Hypertext '93 Proceedings 260 November 1993



naming the source and destination of a link, links can be added, but this is not a definitive feature of the scheme.) A
question immediately arises: If only existing implicit links can be traversed, what is the use of the system? The
answer is that at minimal cost many benefits can be gained by exploiting existing structural information. Consider
the example in Figure 1.

Figure 1 shows page 246 of MIL-STD-1472C [DOD83] a highly structured document. Each paragraph contains a
hierarchically structured identifier called a milnum (e.g., 5.15.3.5.6), a title (e.g., Lists), and optional text (e.g., Items
in lists...). Most paragraphs are sub-paragraphs of others with which their identifiers share a common prefix. Within
the optional text, there might be internal cross-references to related paragraphs (e.g., 5.15.3.6.2 refers to 5.15.3.1.6),
external references to related documents (e.g., 5.15.3.7.2 refers to MIL-STD-490), or references to previous
versions of the document (e.g., this page 246 supersedes the version of 2 May 1981). With appropriate token
recognition (hierarchical paragraph numbers and hyphenated document names are easy, dates referring to previous
document versions are harder) and parsing, the reader of MIL-STD-1472C could be allowed to view and traverse the
document in a variety of ways without the need to change the format of the document. Parsing a paragraph in
[DODS83] is easy because U.S. Military standards follows a standard. Each paragraph can be viewed as an ordered
sequence of unlabeled fields: identifier (ID), title, and text. With the knowledge that the identifiers are milnums,
subordinate and superordinate paragraphs can be determined by a generate-and-test strategy; ID.N exists as an 1D for
another record if and only if ID has at least N subordinates. A token is an ID of a MIL-STD paragraph if it is in a
specified position: indented two spaces after two newlines.

A second question is: Are there are enough document types that are both (1) easy to parse and which (2) have a
rich enough existing implicit link structure to make it worthwhile to make use of those links? There are many other
types of information with these properties [Perl92], notably electronic mail messages (with implicit links to
referenced messages), electronic news articles (typically with an even greater degree of citations). A variety of
special purpose systems have been created for these and other applications (e.g., calendars, bibliographic and
biographic information), but the SST takes the general view of the information domains as special cases of semi-
structured information (a slightly more general structure than semistructured messages [Mal871): a sequence of
named or positionally identified values, usually stored as human-readable text.

A hypertext capability designed to exploit existing implicit links may not have the expressive power of other
systems, the ability to derive hypertext functionality with existing data that comes in the large quantities (e.g., mail,
news, and a variety of other structured documents) recommends the development of such a capability. In addition,
the low effort involved in adding links to structures precludes a hasty conclusion that the scheme can not be
generalized.

REPRESENTING SEMI-STRUCTURED
INFORMATION IN THE SST

MIL-STD-1.473C
1 sep 1983

5.15.3 5.6 istg

order, suh as chronological, alphabetical sequential, functional or impor-

Irems in lists #hall be arranged in a recognizable

The Semi-Structured Toolkit (SST) [Perl92] is a library of
routines for managing semi-structured information. Semi-
structured information can be viewed as a partially ordered set
of fields (fields of the same name are ordered), in which fields
have optional names (or are positionally-defined) and typed
values. Fields in semi-structure records can identify attributes
of records, or relations to other records; in that sense, they can
represent nodes of information linked by typed arcs to other
nodes of information. Examples of semi-structured
information are mail messages [Mal87], news articles, event
calendars, and bibliographic records. There are implicit links
between semi-structured records mail messages and news
articles refer to initiating communications, and bibliographic
records can refer to their referenced publications. These
implicit links create an implicit structure (e.g., directed acyclic
graph, lattice, or network) that can be traversed as a hypertext.

Many hypertext operations (e.g., linking, elision) can be
implemented using traditional information retrieval
technologies (e.g., indexing [Frak92]) with no modification to
the underlying information. Managing information in its
native format is attractive because no conversion (to a

Hypertext '93 Proceedings 261

tance

5.15 3.5.6 1 [ust [ines Fach item 1n a li~t shall start on & new line

5.15.3.5.6.2 Yeriizal Extension whers 115ts extend over more than one
display pane, the last line of one page shall be the first line on the suc-
ceeding page

5.15.3 5.7 Numeric Functuataon
with spaces, cowwas or slashes
used 1f ip common Usage Where none €x1st a space should be used after every
third or fourth digit  Leading zeros shall not be used 1n numerical daca
ernept where needed for clarivy

Long numeryc fields should be punctuated
Consentyonal punctuation schemes should be

5.15 3 5 8 alphanumeris Greuong  Strings ot alphanumerice should be

grouped into sets of thres to five characters or grouped at natural breaks
When a code consists of hoth letters and digits, rommon character types should
be grouped by common character type for ease of lacation

5.15.3 6 Graphic [Msplans

5 15.3.6.1 [z¢

trend informacion, spatially structused deta, time critical information orf
relatively imprecise information

5.15.3.6 2 [Eecurring Data See 5.15 3 1 6

sraphic Aata displays may be used to present assessment of

5.15 3 6 3 Refresh Fates Graphic displays which require user visual

inteqration ot changing patterns shall be vpdated at the marimum refresh rate
of the Aisplay device coneistent with the user's information handling rates

S 15 3.6.4 gGraph pxes
graduated in accordance with 5.2.3.1 4, § 2 3.1.5, and 5.2.3.1.6

The anss of graphs shall be labsled and should be

5.15.3.6.5 Trend Linea When trend lines are tn be compared, multiple
lines should be used on a singla araph

5.15.3.7 Tesfual Data DNSplavs

5.15.3.7.1 yge Informatlon such as abstracts of reports, rhat cannot be
presented 1n any other format, may be presented in text format

§ 15 3.7.2 Formats Tevtual data formats should contorm to the practices
astaplished for the particular type of fecrual data displayed ey  the for-
it ittin, of specifiatizas Shoull STufcim co MIL-STD-450

5.15.3.7.3
least one blauk line

Teat paragraphs shall be separated by at
Paragraphs should be numbered
Supersedes page 246 of 2 May 1981
246

Figure 1. A Page with Existing Implicit Links.

November 1993




proprietary format) of information is
needed, and the installed base of tools can AAA BBB
be used with the information (users do not external data |('|
need to give up their investment in tools and /
skills).  Supporting linking based on BBB
implicit links is attractive because some of
the benefits of hypertext can be gained
without the expense of additional authoring.

internal data |4

The SST is a semi-formal system. Semi-
formal systems (1) represent and
automatically process certain information in
formally specified ways, (2) represent and
make it easy for humans to process the same
or other information in ways that are not
formally specified, and (3) allow the
boundary between formal processing by Figure 3. Linking via an Index
computers and information processing by
people to be easily changed [Lai88]. In
effect, semi-formal systems provide support
to exploit as much structure as is desired, but they do not impose structure. This is in contrast to systems such as
hypertext systems or DBMS that require a commitment to a specific set of conventions that usually restrict users to
specific file formats, functionality, and platforms. The philosophy behind semi-formal systems is that users can
derive many benefits from minimal investment; this is desirable because the cost associated with formal systems
often outweighs the benefits when applied to poorly structured problems. Semi-formal systems are most useful in
information processing problems where there is some understanding of the structure of a domain, but not a complete
understanding [Lai88].

AAA| LOC(AAA)

BBB| LOC(BBB) —

Figure 2. Architecture of the Semi-Structured Toolkit

The SST is designed based on a strategy of least commitment to proprietary data storage formats and application
functionality [Perl92]. Figure 2 shows the basic structure of the SST and how it abstracts away the storage format
and application dependence. Based on a set of lexical specifications that describe the storage format of the data, the
READ and WRITE routines can operate on the data in its native format without a need for translation. The READ
and WRITE routines interact with a semi-structured abstract data type (ADT) which is a virtual unbounded array of
name-value fields (stored internally in a private format). All universal functions (e.g., search, sort, format) access
the data through the semi-structured ADT and so do not depend on the internal or external storage format of the
information; in that sense, they are universal. The functions can make use of a set of field specifications that
indicate the attributes of fields (e.g., given a field name or position, field specifications indicate the data type, range,
display format, etc.) Using field specifications, field values can be tokenized, checked for validity, compared for
searching and sorting operations, formatted, and so on.

REPRESENTING LINKS

Links can be tepresented in records as follows. Assume that each record has a unique identifier (ID) stored in a
known field (e.g., Message-Id or "name"). This assumption is reasonable for applications like mail and news
because messages and articles are assigned a unique identifier when they are created; for other domains, such as
event calendars or bibliographic entries, it is relatively easy to add an identifier field if one is not already present. A
link from a point P to a record R is simply an instance of the ID for the record R at P, possibly with some markup to
identify the ID of R (e.g., {ID(R)}) if the ID is difficult to distinguish from surrounding text. Such links can be
qualified with offset information if needed (e.g., specific fields, and/or ranges of bytes offsets).

An inverted index of the IDs of a set of records can be built by associating the location (e.g., file name and offset) of
each record with its ID. With an inverted index of the IDs for the records, hypertext operations such as linking and
outlining can be implemented extremely efficiently, especially if the ID index is cached and hashed.

Figure 3 shows how a link from a point to a record can be resolved using a ID index. A point in the record on the
left is the start of the link and the record on the right is the target of the link. The appearance to a user is of direct
linkage from a point in AAA to BBB, but the implementation looks up the ID of BBB in the ID index and gets the
paired location (LOC(BBB)). The entries in the ID index are padded to be of fixed size to speed access, but the IDs
can be of any size up to some maximum determined at the time the index is built. For even large networks or
records, the entire ID index can be cached (stored in main memory), and for many applications, hashing of IDs is
both practical and considerably more efficient than binary search [Frak92].

Hypertext '93 Proceedings 262 November 1993



REVERSING LINKS

It is possible to find the locations of
all links to a particular record by
searching for all instances of its ID
that are not at its own location
and/or not in the field holding the
ID. This requires the existence of
inverted indices for all fields in
which the ID might appear, such as
a full text index. Figure 4 shows an
inverted file implementation based
on Chapter 3 of [Frak92] in which
the Keyword Index indicates 3 Hits
at the locations indicated in the
Postings file. (Although it is
possible to merge the Keyword
Index and the Postings file, having a
uniform record size speeds
processing.)

Hypertext '93 Proceedings

Index Postings Records
Keyword  HitsLink 7 5.15.3.1.6
5153163

Figure 4. Finding All Links to a Record

.__.__J 5.15.3.1.6

5.15.3.1.6

263

November 1993



OUTLINING ID Index
Outlining is a structural view Title
operation that makes use of a Author
(possibly implicit) REFS | YY. VV
hierarchical structure of ID AAA ,
information. An example of REFS | XX, YY, Z2Z
an outlining operation on X

bibliographic information ] |

would be to view the YY - REFS | LU, 22
references of a bibliographic 77 _—I_’ ID YY

entry, then view the
references of the references,
and so on. First, we must REFS|SS, TT
assume that the field
containing the references
(REFS) contains the IDs of
the records representing the
references. (Alternatively, in
the case of the document in Figure 1 in which IDs are hierarchically structured milnums, the subordinate records can
be generated algorithmically.) To display the references, a formatted view of the records could be constructed with
a formatted view of certain fields in each of the records (e.g., the date, first author, and title). Figure 5 shows how a
ID index could be used to allow an outline view of the REFS field (the operation works for any transitive relation).
The tokens in the REFS field (XX, YY, ZZ) are located in the ID index and the records at the associated locations
are accessed. The outline operation makes use of the transitive property of the REFS relation and displays the
contents of the REFS fields of the accessed records (the REFS of the REFS), replacing:

Figure 5. Generating an Outline with the ID Index

AAA
XX
YY
2z
with:
AAA
XX
YY
\AY
YY
uu
2z
2z
SS
TT

Note that both AAA and XX refer to YY, and both AAA and YY refer to ZZ. In a textual outline form, the duplicate
entries for YY and ZZ could be specially marked, or a graphical outliner could be used instead.

REVERSE-OUTLINING

Like the index-based linking operation, the index-based outline operation can be reversed. In addition to an index of
all the IDs for records, an index of the REFS field (or more generally, any transitive relation field containing IDs).
For example, a REFS index could be searched for XX to retrieve the locations of all the records referring to XX.

A GENERALIZED INDEX

Thus far, the linking schemes described have used specific files and/or fields to index. It is possible to generalize
the linking by creating an index for each field in a file. The logical structure of the file index currently in use is
shown in the Appendix. A File header contains information about the file, the number of different fields, the width
of padding used, and other bookkeeping information. The Fields index contains, for each field, the name of the
field, the number of terms in the field, and the address in the index where those terms are stored. The Terms index
contains a series of keyword indexes, one for each field, with all the terms in the index, the number of records Ait by

Hypertext '93 Proceedings 264 November 1993



that term, and the location in the index where the postings are stored. Finally, the remainder of the index contains
the individual postings (addresses of the records holding the terms in the fields).

In the SST, field specifications can indicate the type of the field (e.g., that a field called author contains a person's
name, or that a field called email is an Internet address). With this type information, the tokenizer and indexer can
determine how to recognize tokens, what text to skip, and which tokens to index (or treat as stopwords). By default,
tokens are recognized as delimited by whitespace with exterior punctuation removed; this works well for many types
of fields. Stopwords (e.g., the, and, i) are inserted in the Term index (to provide feedback during searching), but
with a zero frequency and with the location holding the number of times the stopword was seen. Additionally, in the
case of a single posting, the location of the posting is stored in the Term index.

In the SST, an index is built for each file so that when a file gets updated, only its index needs to be updated. Even
with files up to about a megabyte, the indexing does not take long, even on low-end PCs. But the desire for
efficiency for updating files creates problems, and the solution space is still being explored. To search for records in
many files or to link across different documents, either multiple indexes must be searched, which is inefficient, or
multi-file indexes must be built from single file indexes. The locations of records, which were offsets in single files,
must be qualified with a file identifier, increasing the size of the index and the complexity of access.. When
searching the HCI Bibliography [Perl93], which contains over 200 files, each with about 50 records, files are
selected before they are searched (as opposed to building an index of all the files, some of which may not be of
interest). An index that merges the selected file indexes can be built in the background while a query is constructed,
and that index can be maintained for the duration of the session and then deleted to reclaim the space. Merging
indexes is much faster than scanning and building them from scratch, and it has the advantage of allowing the
flexible selection of files. This is particularly useful when indexing news articles (of which there are many
thousands) which change many times a day.

The ability to select files can be views as a form of query (as can a newsgroup subscription list), and the construction
of indexes of the files that are of interest serves to reduce the need for special purpose software for reading mail,
news, etc. When constructing a query in the SST, it is possible to search for the same expression in a variety of
fields. For example, one might look for Nielsen as an author or as an editor. To search multiple fields for the same
expression, it is possible to create an index by merging the fields to be treated as equivalent (e.g., a subject index
might include the title, keywords, and abstract fields). The structure of the SST File index in the appendix makes
merged multi-file multi-field indexes conceivable, but they have not yet been attempted.

EXPERIENCES

We have had about four years experience using inverted indices as a substrate for hypertext operations like linking
and outlining, first with NaviText [Perl89] and more recently with the SST [Perl92] applied to mail, news,
bibliographic, and biographical (with digitized photographic images) browsing and querying. In addition to their
known properties for searching full text databases, inverted indices are an efficient technology for implementing a
variety of hypertext operations. The SST's use of implicit links in semi-structured records without the imposition of
format is a new method for implementing hypertext operations. Index-based hypertext may not provide all the
capabilities needed for a particular application -- there might be a need for separate existence of links if they require
a richer representation -- it does provide many capabilities at virtually no cost of authoring.

REFERENCES

[DOD83] MIL-STD-1472C (1983), Human Engineering Design Criteria for Military Systems,
Equipment and Facilities. Washington, DC: U.S. Department of Defense.

[Fount90]  Fountain, A. M., Hall, W, Heath, I. & Davis, H. C. (1990) MICROCOSM: An Open Model for
Hypermedia with Dynamic Linking. Proceedings of ECHT'90, 298-311. Cambridge
University Press.

[Frak92] William B. Frakes, W. B. & Baeza-Yates, R (Eds.) (1992) Information Retrieval: Data
Structures and Algorithms. Englewood-Cliffs, New Jersey: Prentice-Hall.

[Lai88] Lai, Y.-Y. & Malone, T. W. (1988) Object Lens: A "Spreadsheet” for Cooperative Work.
ACM Transactions on Office Information Systems, 6:4, 332-353.

Hypertext '93 Proceedings 265 November 1993



[Mal87] Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R., & Rosenblitt, D. (1987) Semistructured
Messages Are Surprisingly Useful for Computer-Supported Coordination, ACM
Transactions on Office Information Systems, 5:2, 115-131.

[Pearl89] Pearl, A. (1989) Sun's Link Service: A Protocol for Open Linking. ACM Hypertext'89
Proceedings, 137-146.

[Perl89] Perlman, G. (1989) Asynchronous Design/Evaluation Methods for Hypertext Technology
Development, ACM Hypertext'89 Proceedings, 61-81.

[Per193] Perlman, G. (1993) The HCI Bibliography. ACM SIGCHI Bulletin, 23:3, 36-37.

[Per192] Perlman, G. (1992) A Vision of Universal Functionality for Tomorrow's User Interfaces,
Proceedings of OZCHI 92 Australian Conference on Human-Computer Interaction,
Australian Ergonomics Society, 1-14.

[Remd87] Remde, J. R., Gomez, L. M., & Landauer, T. K. (1987) SuperBook: An Automatic Tool for
Information Exploration - Hypertext? ACM Hypertext'87 Proceedings, 175-188.

[Walk87]  Walker, J. H. (1987) Document Examiner: Delivery Interface for Hypertext Documents.
ACM Hypertext'87 Proceedings, 307-323.

ACKNOWLEDGMENTS

Chandrasekhar Reddy and Steve Edwards have been influential in recent design decisions. 1 would like to thank Ed
Swan for his help with the X-based SST viewer, and Srinivas Raghavan for his help with the X-based SST query
expression construction system.

Permission to copy without fee all or part of this material is that copying is by permission of the Association for Computing
granted provided that the copies sre not mads or distributed for Machinery. To copy otherwise, or to republish, requires a fee
direct commercial sdventage, the ACM copyright notice and the 8nd/or specific permission.

title of the publication and its date appear, and notice is given © 1993 ACM 0-89791-624-7/93/0011...81.50

Hypertext '93 Proceedings 266 November 1993



APPENDIX: LOGICAL STRUCTURE OF THE INDEX
File Information

l[iilename nfields | width "... "

{Fields}

field{1} nterms {1} &term{1)}[1]
field{2} nterms {2} &term{2} (1]
field{nfields} nterms {nfields} &term{nfields} [1]

[Terms] in {Fields}

term{1}[11 nrecs{1}[1] &&rec{1l}[1] (1)

term{1}[2] nrecs{l}[2] &&rec{1}[21(1)

term{1l} [nterms{1}] nrecs{1l} [nterms{1}] &&rec{l}[nterms{1}] (1)

term{2}[1] nrecs{2} (1} &&rec{2}[1]1 (1)

term{2} [nterms{2}] nrecs{2}[nterms{2}] &&rec{2} [nterms{2}] (1)
term{nfields}[1] nrecs{nfields} 1] &&rec{nfields}[1] (1)

term{nfields} [nterms{nfields}] nrecs{nfields}{nterms{nfields}]) &&rec{ntields} (nterms{nfields}] (1}

(Records) holding [Terms] in ({Fields}

&rec{1}[1](1)

grec{1} (1] (nrecs[1] (1))
&rec{1l}[2](1)

grec{1) (2] (nrecs{1}(2])
&reé%i}[nterms{l}](l)

grec{l} [nterms{1}] (nrecs{1} [nterms{1}])

&rec{2}[1](1)
&reéié}[l](nrecs{Z}[l])
&reéié}[nterms{Z}](l)

&reéié)[nterms(2}](nrecs{Z}[nterms(2}])

&rec{nfields} [1] (1)
&reéiﬁfields}[l](nrecs{nflelds}[l]}
&reé%ﬁfields}[nterms{nfields}](1)

&reézﬁfields}[nterms{nfields}](nrecs(nfields}[nterms{nfields)])

Hypertext '93 Proceedings 267

November 1993



