
PipeFitter: A SYSTEM FOR CONSTRUCTING PIPELINES 
Gary Perlman 

Lynn M. Snider 

Department of Computer and Information Science 
The Ohio State University, Columbus, Ohio, USA 43210 

perlman@cis.ohio-state.edu 
6 14-292-25 66 

ABSTRACT 
PipeFitter provides users with a platform-independent 
intuitive user interface to pipeline construction, thereby 
increasing the ability of users to compose commands 
that were previously the exclusive domain of experienced 
users. It is designed to allow the economical (even 
automatic) development of pipeline environments that 
provide task-oriented help with ready-made applications. 
Yet PipeFitter allows a high degree of customization if 
it is needed. Dynamic feedback that coordinates 
control-panel input with command-line input allows 
multiple modes of specifying tool options. The direction 
of dataflow in pipelines is specified by vertical 
positioningof tool dialogues, and is further reinforced by 
dynamic feedback during execution. 

KEYWORDS Pipelines, Dataflow, Direct manipulation, 
Graphical interaction, Gulf of evaluation and execution, 
Model-based design, Portability, User interface 
specification, Command language, Control panel 
Computing reviews category: 

H.5.2: User Interfaces - Interaction styles 

I I 

Figure 1. Pipeline from program A to B to C. 

INTRODUCTION 
An Overview of Pipelines 
One of the most elegant and powerful features of UNIX 
systems is the ability to construct complex pipelines from 
simple tools. Apipeline is a sequence of commands in 
which subsequent programs read data produced by 
preceding programs. This is depicted in Figure 1 in 
which the output from program A is directed to be the 

input to program B, the output of which is made the 
input to program C. Rather than create intermediate 
files, a user constructs a pipeline command and the data 
communication is handled by the system. Although 
pipelines are usually associated with UNIX systems, they 
are also part of DOS systems, and the concept of a 
linear series of transformations is useful on any 
computing system. 

There are problems Witn pipelines. Although elegant in design, 
our intuition is that pipelines are underutilized for 
several reasons. A major factor is the large amount of 
prerequisite knowledge needed for their construction. 
First, a problem must be decomposed into subproblems 
that are solvable by individual tools. This in turn 
requires a good knowledge of the existence, purpose, 
and basic functions of tools. This may not be easy, 
because many tools are only useful in pipelines with 
others, making incremental learning difficult. Then, 
even after users know what tools to use, they must know 
how to use the individual tools and the syntax of 
pipelines to integrate them. For example, to run off 
documents in the troff typesetting language, it would not 
be an easy task for a novice to determine that the 
correct pipeline for a specific document might be: 

eqn myfile I pic I tbl I troff -me I Ipr -Plw323 
Experienced users can avoid memorizing such complex 
incantations by saving them in files of commands, but 
that requires the skills to create parameterized functions. 

pipelines are Useful and Sometimes Usable. With so many 
impediments to overcome, it should not be surprising 
that pipelines are underutilized. But, despite these 
indications, we have good evidence that users with little 
or no programming experience can and do  construct 
pipelines in UNIX and DOS environments. The I STAT 
data analysis package [9] makes heavy use of pipelines 
to connect data analysis tools, and these programs are 
used in hundreds of universities for basic instruction. 
We think people can readily adapt to the idea of 
pipelines of statistical routines because statistics is a 
natural application for pipelines in that analyses can 



usually be viewed as a series of transformations followed 
by graphical display, descriptive, and inferential statistics. 
Hutchins et a1 [5] and Miller et a1 [6] both describe 
graphical interfaces to pipelines of statistical commands, 
and the S system for data analysis was originally based 
on a model of pipelines, even though the user interface 
was a functional command language [2]. A survey of 
I STAT users showed that people used STAT because 
it was readily available on UNIX and DOS, and that 
analyses could be done quickly in a familiar 
environment. However, most respondents complained 
about having to recall how to use program options and 
the difficulty of integrating programs into long pipelines. 

Previous Pipeline Construction Systems 
Several researchers have addressed the problem of 
connecting simple tools to accomplish complex 
operations. Hutchins et a1 [5] proposed a direct 
manipulation interface to a statistical system. In it, users 
would select data manipulation, analysis, and display 
tools, and connect then to form larger analyses. In their 
discussion, Hutchins et a1 argued that a direct 
manipulation graphical interface could improve system 
usability by reducing the articulatory and semantic 
distances between users’ goals and the state of the 
activity. In a model of stages of action, Norman [7] and 
Hutchins et a1 [5] recommend reducing articulatory and 
semantic distances in the gulfs of execution and 
evaluation (see Table I). This model of interaction 
suggests areas where system design can improve usability 
- areas that might otherwise be overlooked without an 
organizing model. This work has been influential in the 
development of systems for connecting tools. After a 
discussion of relevant systems, we will discuss the design 
of our system, PipeFitter, and how it addresses usability 
and scalability concerns. 

VSTAT [6] allows users to construct complex statistical 
tools from basic ones by drawing dataflow diagrams. 
Datasets are represented as objects and are connected 
to the tools via input and output ports. Data and tools 
are connected with data flowing from left to right on the 
screen. 

Squish [4] is a graphical shell for UNIX that lets users 
select tools from a menu of commands with meaningful 
descriptions. Users select tools and interact with 
customdesignedcontrol panels to supply the parameters 
to commands. The completed control panels are 
arranged on the screen left-to-right to connect the tools. 
The created command is shown in an editable window. 

ConMan [3] supports interactive application construction 
with a visual programming language that allows the 
connection of multiple input/outputs among several 
active processes. Like VSTAT, ConMan uses the 
dataflow metaphor, but unlike VSTAT, the connections 

among components are multidirectional, and are 
designed for interactive control of active processes. 

/She// [l]  is a visual UNIX shell that promotes a visual 
programming language in which information processing 
machines are arranged on a desktop. Machines are 
depicted as icons, and inputs and outputs are objects 
that can be dropped into machines for processing. When 
a machine is activated, it prompts for a limited set of 
parameters. 

Common Themes and Unsdved Problems 
In the systems described, there are several common 
themes and some unsolved problems. These, along with 
the work by Norman [7], have influenced our approach 
to the design of PipeFitter. 

Sca/ab/jty. The first unsolved problem that we would like 
to address is that of scalability, the ability to solve 
realistically large problems (e.g., manage over 100 tools). 
There are several dimensions of scalability: 

The Effect of Scale on Usability. A system that 
provides a good interface to a few tools may not provide 
a good user interface to many tools. We would expect 
all of the systems described to have increasing usability 
problems as the number of tools increased, mainly 
because they view all commands as part of a single set 
and have no way of grouping sets of related commands. 
Two systems described did not attempt to address this 
problem: VSTAT was designed to only apply to one set 
of related commands for statistics, and ConMan was 
designed to develop interactive graphical controls. The 
single menu of descriptive phrases in Squish and the 
customdesigned icons in IShell would both develop 
usability problems (e.g., visual search and identification) 
as the number of tools increased. 

The Effect of Scale on Development Costs. If a 
system requires that existing work must be discarded, or 
that a great deal of highly skilled work is needed, then 
the acceptability of the development of a new system is 
lowered. Ideally, existing tools (e.g., on UNIX) could be 
used in a graphical environment with no changes to 
those tools, and relatively low cost to provide an 
improved interface. A common criticism of graphical 
programming, particularly interactive graphical 
programming such as programming-byexample, is that 
the technique does not scale-up to larger systems. For 
most of the systems discussed, it is necessary to modify 
existing tools to provide a graphical interface; this would 
necessarily hinder development. The notable exception 
is Squish, that uses a separate specification to define the 
interface to individual commands. All of the systems 
(except IShell, which simply prompts for a limited set of 
parameters) use control-panels or ported-icons that are 
customdesigned. This requirement makes it difficult to 
add new functionality, and impedes the use of many 



classic pipeline tools in a graphical environment because 
of high development costs. For simple tools (e.g., UNIX 
wc, head, tail) or simple uses of moderately complex 
tools (e.g., UNIX sort), it is possible to automatically 
generate control panels [10,11]. Arguably, custom 
interfaces are needed for even limited subsets of some 
functions (e.g., UNIX tools that take expressions as 
parameters, such as grep, awk, and sed). 

Stages of Action. Norman's [7] stages of action suggest a 
series of problems - gulfs of execution and evaluation 
- that users must bridge to act effectively. Although 
the systems described above provide some help, there 
are areas in which more help can be provided. The 
follow areas move from the formation of goals, across 
the gulf of execution, and over the gulf of evaluation. 
Table I shows Norman's stages and the problems with 
pipelines that occur at each stage. Later, we will discuss 
how PipeFitter addresses each of those problems. 

Task-Onented problem Decomposition. None of the systems 
provide high-level taskaiented help with problem 
decomposition by providing examples of how groups of 
related commands can be integrated. To promote 
system use, special-purpose toolkits (e.g., statistics, text 
formatting, bibliography use), examples of their use 
(existing pipelines), and descriptions of example 
pipelines are all critical. Toolkits (or workbenches [S]) 
reduce the amount of knowledge required and reduces 
the number of choices users must make. Initial 
examples can be used as ready-made applications that 
help users get started. 

Tod Compatibihty. None of the systems provide tool- 
compatibility help by trying to determine if the output 
format of one tool matches the input format for a 
subsequent tool. On UNIX systems, most tools have few 
requirements (e.g., textual ASCII input) but subsets of 
programs have stricter input requirements (e.g., 
tabular/numerical, special languages, bibliographic 
records), which could be used to suggest relevant tools 
or provide feedback to users. 

Tod Mentification. Most of the systems try to help users 
identify tools to make them more recognizable than, for 
example, standard UNIX names. Squish presents 
meaningful phrases, VSTAT uses meaningful phrases to 
annotate a few different types of icons, while IShell 
presents a customdesigned icon for each tool (although 
with uncertain identifiability). Descriptive phrases and 
icons are useful to identify the purpose of tools, but 
these aids may need to be customized for different 
application areas because the same tool may have 
different uses in different contexts. 

Full Funcb'ona/ify. AU of the systems provide a simplified 
interface to handle parameters (options and operands), 

in part because the parameters are presented in custom- 
designed control panels, in input slots (which require 
longer development time), or in serially presented 
prompts (which could require extensive user interaction). 
Simplified interfaces, however, preclude providing full 
functionality, particularly to advanced users. It should 
be possible to design a usable interface that still allows 
full functionality for expert use. 

Dud-Mode Command Cmpo~fion. Only Squish presents the 
constructed command to users and allows them to edit 
it, however, the changes to the textual command are not 
then reflected in the control panels. It is necessary to 
provide dual-mode command composition, to allow 
novices to see the command constructed, but also 
importantly, to let experienced users supply options 
directly to a command. Users should be able to change 
the control panel and immediately see the changes in 
textual commands and vice versa. Allowing textual input 
of (or addition to) commands is particularly desirable if 
the control panel interface is simplified, leaving some 
parameters only available via the command line. To 
allow such dual mode editing, it is necessary to have a 
separate specification of parameters and their attributes; 
users actions change the separate specifications through 
the views and these changes are propagated back to 
both control panel and textual views. This specification 
is also useful for generating character-based and 
graphical interfaces automatically [lo], which is an 
important issue of scalability. 

Tod Layout. The layout of tools in the display is one- 
dimensional (left-to-right) for Squish, and two- 
dimensional for the other systems, although in the case 
of IShell, the 2D layout is unnecessary for one- 
dimensional dataflow. For systems with multiple inputs 
and outputs, the dataflow among tools can be confusing, 
particularly for complex applications (e.g., ConMan can 
have eight inputs and eight outputs per process). 
Systems can and should simplifL layout needs if only 
simple dataflow is involved (i.e., pipelines). 

Tod Connection. All of the systems (except Squish) 
connect tools with directed lines. Based on the 
experiences of Miller el af with VSTAT, we think that 
users might require training to learn how to connect the 
tools; this is contrary to the basic design goal of making 
it easy for users to construct pipelines. For one- 
dimensionaldataflow, directed lines may be unnecessary. 
Taken together, the issues of tool layout and connection 
can be addressed simultaneously for pipelines. We think 
that implicitly ordered connections by ordering tools 
along a spatial dimension is intuitive. Squish's horizontal 
layout (which matches pipeline command-line syntax) 
makes it difficult to construct large pipelines. This 
scaling problem makes us conclude that inferring 



pipeline connections from vertical layout would be the 
best solution, particularly if critical information is at the 

feedback Only IShell specifically addresses the issue of 
feedback of operation and dataflow by providing viewers 
that can be attached to pipelines, and Borg also 
discusses the potential use of animation to show active 
dataflow. Based on experiences with a pipeline 
monitoring program, io, we concluded that the feedback 
provided by pipeline monitoring commands is useful. io 
was written at UCSD around 1981 by the first author 
and Don Norman. It allows the monitoring of the 
percent or absolute amount of data processed, for each 
tool in a pipeline. io also provides a file data pump for 
the start of pipelines (similar to UNIX cat), a mid- 
pipeline redirection facility (similar to UNIX tee), and a 
data storage sink for the end of pipelines (with safe 
overwrites of files). The functionality of io, along with 
a viewer to examine the content of pipelines, should be 
generic in any pipeline construction system, and should 
be integrated into pipelines like other tools. 

Design and Implementation Goals 
Based on the discussion above, we developed specific 
design and implementation goals for a pipeline 
construction system. These were derived from two 
general concerns: (1) to make it easy for users to create 
and use pipelines; and (2) to make it possible to scale up 
the development to include potentially hundreds of tools. 
The concern for usability led to the following goals to: 
0 be easy to use by novice users; 
0 allow the reuse of pipelines over long periods; 
0 allow continued use by experts; 
0 provide good feedback of operations. 

To be applicable to many tools, we constrained our 
design to: 
0 require little or no modification of existing code; 
0 allow potentially automatic construction of control 

panels (from code or independent specifications); 
0 be portable to many environments, graphical and 

non-graphical, and to many hardware/operating 
system platforms. 

It was not our goal to fK UNIX. Pipelines are available 
in other environments, such as DOS, and there are 
several command shells available on Apple Macintosh 
systems. Rather, we viewed the problem as one of 
integrating, using, and reusing loosely coupled tools. 

It was a goal to allow pipelines in a graphical user 
interface because we wanted to make the capabilities of 
pipelines and their component tools readily available in 
graphical environments, such as the Apple Macintosh, in 
which non-graphical interfaces would be rejected. 

top of tools. 

.............................................................................................. 
INPUT FILES 

wildcards, file list 
.............................................................................................. 
SEARCH FOR RECORDS 

qu e ly -by aample  in tevace 
.............................................................................................. 
SORT RECORDS 

list of fields to sort on, field types, reversal option 
.............................................................................................. 
EXTRACT FIELDS 

list offiercis to (not) extract 

FORMAT FIELDS 
format template or file 

.............................................................................................. 
OUTPUT TO FILE 

output file and options 
.............................................................................................. 
'igure 2. A schema for form-based interface for 

information retrieval. 

M E  DESIGN OF PipeFitter 
PipeFitter is a system to reduce the articulatory and 
semantic distances in the construction and monitoring of 
pipelines of commands. The design of PipeFitter is 
based on a metaphor of a form that is filled from top to 
bottom, as is depicted in Figure 2. There are fields in 
sections that correspond to parameters to individual 
operations. An early design of a bibliographic retrieval 
environment for [12] presented a form with the series of 
transformations from input to search to sort to format to 
display or output. Although the layout in Figure 2 was 
thought to be adequate for many uses, there were other 
tools (e.g., to add or merge fields) that were not 
included, and there were realistic cases where the order 
of operations might be different (e.g., fields might be 
extracted before or after search). The desire for 
flexibility of which commands were to be used and in 
what order, led to a generalization of the form that 
allows the construction of pipelines of any commands 
(e.g., standard UNIX filters, data analysis programs [9]). 
The idea that led to the design of PipeFitter was to cut 
up the form into separate tools, while maintaining the 
overall form-filling interface, and be able to construct 
command sequences by making selections from toolkits. 

Table I is based on Norman's [7] seven stages of action 
and the design questions that can be asked to help 
improve usability a t  each stage. In Table I, we 
summarize some of the problems that users would 
encounter with pipelines a t  each stage, and the way we 
addressed each in the design of PipeFitter. 

An example PipeFitter screen is shown in Figure 3. It 



Table I. Stages, Problems, and Solutions 

Stage of Activity (Design Questions) 

1 Forming the goal (Can the user 
determine the function of the device?) 

Problems with Pipelines PipeFitter Solutions 

lack of problem decomposition 
knowledge the purpose of pipelines 

pipeline descriptions identify 

2 Forming the intention (Can the user tell 
what actions are possible?) 

lack of awareness the existence 
of tools; unknown capabilities 
and compatibility of tools; 
obscurity of tool names 

3 Specifying an action (Can the user 
determine the mappings from intention 
to physical movement?) 

saved pipelines provide menus 
of related commands with 
descriptions of tools 

lack of knowledge of how to use, 
combine, and run tools 

familiar widgets; pipelines 
constructed by positioning; 
instructions in pipeline 
descriptions 

4 Executing the action (Can the user 
perform the action?) 

control panels simplify 
interaction 

typing errors, syntax errors, lack 
of help on commands, data entry 
errors 

tool position implies direction 
of dataflow; active tool is 
brought to foreground; viewers 
can be inserted in pipeline 

5 Perceiving the systemhorld state (Can 
the user tell what state the system is in?) 

lack of fccdback of which tools 
are connected, which are active, 
and what they are doing 

pipeline viewers allow 
examination of intermediate 
steps; meters give feedback 

6 Interpreting the system state (Can the 
user determine the mapping from system 
state to interpreting the outcome?) 
Evaluating the outcome (Can the user 
tell if the system is in the desired state? 

7 command lines and control 
panels are coordinated 

difficulty of looking at the 
outputs/inputs of commands a t  
each point in the pipeline 
lack of dynamic feedback of 
effect of actions 

contains a pipeline to search for, sort, and extract fields 
from records in a database of bibliographic records, and 
is based on a pipeline stored in the format shown in 
Figure 4. Although PipeFitter is designed with a toolkit 
philosophy, we thought that by providing canned 
applications (i.e., stored pipelines) such as the one in 
Figure 3, it would help users learn the toolambination 
concept, and if not, then at least users would have useful 
applications. The availability of example pipelines 
should increase users’ knowledge of tools and should 
help them by providing examples of problem 
decompositions known to be effective. 

Figure 3 shows a pipeline of five tools. Two of the tools 
are from a small set that are built in to PipeFitter: the 
input tool, the viewer tool, the output tool, and the 
generic tool. Pipelines are opened and saved from the 
File selection in the menu bar. When a tool dialogue is 
inserted from the Tools menu, it is placed on an implicit 
diagonal grid; then the tool can be moved. The view 
selection controls the arrangement of tool dialogues on 
the screen (they can be automatically arranged along the 
implicit grid) and the display of the pipeline description 

(it can be displayed and edited at any time). The 
Execute selection runs the current pipeline. Figure 3 
shows the display immediately after opening the pipeline 
file initpip. Pipeline files are plain text that contain 
three sections: (1) The description is placed at a user- 
controlled X-Y coordinate, and may be displayed 
automatically when the pipeline is opened; (2) The 
commands section contains the X-Y locations of the 
tools, along with any options for those tools; (3) The 
tools section contains the names of all tools available to 
build a new pipeline, and the descriptive phrases for the 
tools in the pipeline. Figure 6 is an example of a saved 
pipeline for another environment, the troff command in 
the introduction to this paper. 

When a pipeline is opened, the tool options are parsed 
and propagated to the appropriate parts of the control 
panels, and the tool dialogues are named and displayed 
at the saved locations. The pipeline description can 
contain instructions about how to execute the pipeline. 
To execute the pipeline, users set parameters in the tool 
dialogues and select Execute from the menu bar. The 
tools are executed in the order of their vertical position. 



6 Ill.? tllll loole I l lP l l l  l, ,”,,,l .- ’ ~ . changed in the control panel, the command line changes, 

Figure 3. A PipeFitter display for a stored pipeline. 

@ D e s c r i p t i o n  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
2 6 4  46 AUTO 

T h i s  p i p e l i n e  s e a r c h e s  f o r  r e c o r d s  
on v a r i o u s  t o p i c s .  Make a n y  
changes  t o  t h e  d i a l o g u e s  and  select  
E x e c u t e  f r o m  t h e  menu bar. 
@Commands _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

2 0  5 0  i n p u t  * .b ib  
3 5  9 5  s s s e a r c h  T,K,X= 

6 5  1 8 5  s s e x t r a c t  -r -fP,C,M 
8 0  2 3 0  v i e w e r  

5 0  1 4 0  S S S O r t  -fA,D 

@ T o o l s  ( i n p u t  o u t p u t  v i e w e r  g e n e r i c )  
s s a d d  Add F i e l d s  
ssextract  E x t r a c t  F i e l d s  
s s f o r d e r  O r d e r  F i e l d s  
s s f o r m a t  Format  F i e l d s  
s smerge  Merge F i e l d s  
s s s e a r c h  S e a r c h  for Records  
sssort Sort F i e l d s  

’igure 4. Pipeline file for Figure 3. 

Figure 5 shows the result of some editing on Figure 3: 
some tool dialogues have been moved, a tool to order 
fields has been inserted, parameters have been filled in, 
and the pipeline has been executed. As the pipeline was 
running, each tool’s dialogue was brought to the 
foreground as it was activated; this provided feedback of 
the state of the execution. Although the layout in 
Figure 5 is hard to parse (it is that way to show parts of 
control panels), it is easier to follow when you are the 
one making the changes. It is always possible to have 
PipeFitter reorganize the display so that the tool 
dialogues follow the implicit grid. In Figure 5, parts of 
the control panels for extract and order are shown. The 
one for field extraction is a custom dialogue that 
presents more descriptive fields names for options and 
a checkbox for exclusion of fields. As options are 

Figure 5. A PipeFitter display after editing and 
execution. 

@ DESCript ion  
265  5 0  AUTOmatic 
T h i s  p i p e l i n e  w i l l  l e t  you r u n  o f f  
a m a n u s c r i p t  f i l e  w r i t t e n  i n  t h e  
t r o f f  f o r m a t t i n g  l anguage .  
@ COMMands 

2 0  5 0  i n p u t  
3 5  9 5  e q n  
5 0  1 4 0  pic  
6 5  1 8 5  t b l  
8 0  2 3 0  p t r o f f  -me 
9 5  2 6 5  l p r  - P 1 ~ 3  2 3 

@ TOOLS 
p t r o f f  P o s t s c r i p t  Runoff 
efrn E q u a t i o n  P r o c e s s o r  
P l  = P i c t u r e  P r o c e s s o r  
t b l  T a b l e  P r o c e s s o r  
1 P r  L a s e r / L i n e - P r i n t e r  

Ggure 6. A saved pipeline for the troff command. 

IMPLEMENTATION OF PipeFitter 
PipeFitter is implemented in C using the XVT 
(Extensible Virtual Toolkit) library. XVT allows the 
development of one system that is portable to many 
graphical and non-graphical environments. The fmt  
implementation of PipeFitter is on a Macintosh, where 
tools were implemented as code resources. 

Underneath the portable user interface of PipeFitter is 
a portable application connection environment. UNIX- 
compatible systems, with few exceptions, support 



pipelines with memory buffers that are written by one 
process and read by another. Such operating system 
functions are not available on other systems, such as 
DOS, Macintosh, or VMS. DOS implements pipelines 
with temporary intermediate files, hidden from the user. 
For environments like DOS and Macintosh, PipeFitter 
creates temporary files and manages the execution of the 
sequence of commands in pipelines. This has some 
performance implications, but allows basic pipeline 
functionality in all environments. 

There are some user interface implications of allowing 
pipelines on single-process systems like DOS and 
Macintosh versus multi-processing systems like UNIX. 
On systems like DOS and Macintosh, PipeFitter executes 
commands in pipelines strictly sequentially, while on 
UNIX systems, the processes can be concurrently active 
and can begin to read input as soon as it is made 
available by preceding processes. Therefore, the 
feedback from an asynchronous pipeline is more 
complex than that from a sequential pipeline. For 
example, a sequence of commands might be SO%, 40%, 
and 20% done on a UNIX system. 

There are three strategies for the development of 
control panels for tools. These trade off user expertise 
against development cost. 
1. Control panels are handcrafted and may involve 

iterative design. This strategy is used for tools that 
have complex options that require help to supply 
(e.g., a Boolean search expression). This strategy 
requires a large investment of time and effort for 
each command. 

2. Control panels are generated automatically from 
specifications of programs and their options. 
Perlman [lo] describes a system, setopt, for 
generating textual and form-based user interfaces to 
UNIX commands based on a specification of 
commands and options. For each option, its single- 
character flag, internal variable, brief description, 
data type, default value, size (scalar or vector), range, 
and implied actions, are specified in a tabular 
format. From a database of option specifications, a 
variety of user interfaces can be generated 
automatically from code templates. We are 
planning to investigate automatic intelligent layout 
of the options based on an axiomatic model of 
information presentation [ll]. This strategy requires 
a minimal investment for each command, but it 
cannot be used for all commands, and may require 
more knowledge of commands and options by users. 

3. A generic control panel allows users to supply a 
command name and its arguments. This strategy 
requires almost no investment for each command, 
but requires detailed knowledge by users. 

There is one notable exception to the coordination of 
textual options and graphical specification of options. 
Any options that are not known to the graphical option 
specification manager are maintained a t  the end of the 
textual option field, for use when the tool executes. This 
makes it possible to design simplified user interfaces to 
commands, yet still allow full use of options by 
knowledgeable users. 

CONCLUSIONS 
PipeFitter was designed to help users span the gulfs of 
execution and evaluation encountered when constructing 
pipelines of commands. The concept of a pipeline can 
be conveyed intuitively, and supported by software, even 
on systems with which pipelines are not ordinarily 
associated. The obstacles of prerequisite knowledge 
needed to construct pipelines can be bridged in simple 
cases by providing canned applications that reduce the 
use of typical pipelines to a task of form-filling. 
Obstacles of construction of new pipelines can be 
bridged by reducing the task to one of modification. 
Dynamic feedback helps bridge the gulf of execution. 

PipeFitter provides users with a platform-independent 
intuitive user interface to pipeline construction, thereby 
increasing the ability of users to compose commands 
that were previously the exclusive domain of experienced 
users. It is designed to allow the economical (even 
automatic) development of pipeline environments that 
provide task-oriented help with ready-made applications. 
Yet PipeFitter allows a high degree of customization if 
it is needed. Dynamic feedback that coordinates 
control-panel input with command-line input allows 
multiple modes of specifying tool options. The direction 
of dataflow in pipelines is specified by vertical 
positioning of tool dialogues, and is further reinforced by 
dynamic feedback during execution. 

Our current plans for PipeFitter are to complete the 
port to other windowing environments (i.e., DOS and 
UNIX) and to gather long-term feedback on its use, 
particularly with statistical [9] and bibliographic [12] 
applications. There are also several enhancements that 
we discussed, but have not yet explored: 
0 better interface code generation from specifications; 
0 checking the compatibility of data formats between 

tools based on specifications, and suggesting when 
certain tools may be more or  less appropriate; 

0 multiple percentdone/flow indicators attached to 
tool dialogues that are executing in parallel; 

0 richer feedback about the state of tools (whether 
they are reading, processing, or  writing), what 
resources they are using (e.g., CPU), and finer- 
grained metering (e.g., number of records 
processed), perhaps using sound; 

0 saving command histories for later reuse; 



ACKNOWLEDGEMENTS 
This work was funded in part by The Ohio State 
University and Apple Computer, which in no way should 
be taken as an endorsement of this work. 

UNIX is a registered trademark of AT&T. VMS is a 
trademark of Digital Equipment Corporation. 
Macintosh is a registered trademark of Apple Computer. 
XVT is a trademark of XVT. 

REFERENCES 

1. Borg, K. IShell: A Visual UNIX Shell. In Proceedings of 
CHI’90 Conference on Human Factors in Computing 
Systems, ACM, New York, 1990, pp. 201-207. 

Becker, R. A. & Chambers., J. M. Design of the S 
System for Data Analysis. Communications of the ACM, 
275,  pp. 486495, 1984. 

3. Haeberli, P. E. ConMan: A Visual Programming 
Language for Interactive Graphics. In Proceedings of 
SIGGRAPH’88 Conference on Computer Graphics, 
Computer Graphics, 22:4, ACM, New York, 1988, pp. 

Henry, T. R. & Hudson, S. E. Squish: A Graphical Shell 
for UNIX. In Proceedings of Graphics Interface ’88, 
1988, pp. 4349. 

Hutchins, E. L., Hollan, J. D. & Norman, D. A. Direct 
Manipulation Interfaces. In D. A. Norman & S. W. 
Draper (Editors) User Centered System Design, 87-124, 
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986. 

2. 

103-1 11. 

4. 

5. 

6. Miller, J. R., Hill, W. C., McKendree, J., Masson, M. E. 
J., Blumenthal, B., Terveen, L., & Zaback, J. The Role 
of the System Image in Intelligent User Assistance, In 
Proceedings of INTERACT87, 885-890, 1987, North 
Holland, Amsterdam. 

Norman, D. A. Cognitive Engineering. In D. A. Norman 
& S. W. Draper (Editors) User Centered System Design, 
33-61, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986. 

8. Perlman, G. MENUNIX: A Menu Interface to UNIX 
Files and Programs. Proceedings of the 1982 Summer 
USENIX Conference. USENIX Association, El Cerito, 
California, 1982. 

9. Perlman, G. & Horan, F. L. Report on UNIXISTAT 
Release 5.1 Data Analysis Programs for UNIX and 
MSDOS. Behavior Research Methods, Instruments, 81 
Computers, 182,168-176,1986. 

Multilingual Programming: Coordinating 
Programs, User Interfaces, On-Line Help, and 
Documentation. Proceedings of the ACM SIGDOC 
Fourth International Conference on System 
Documentation, 1986, pp. 123-129. 

11. Perlman, G. An Axiomatic Model of Information 
Presentation. Proceedings of the 31st Annual Human 
Factors Society Meeting. Human Factors Society, Santa 
Monica, CA, 1987, pp. 1229-1233. 

12. Perlman, G. The HCI Bibliography Project. ACM 
SIGCIII Bulletin, 233 ,  pp. 15-20, 1991. 

7. 

10. Perlman, G. 


