

 1

Avoiding Unintentional Inconsistency
Gary Perlman

OCLC Online Computer Library Center
6565 Frantz Road; Dublin, Ohio, USA 43017

Perlman@oclc.org

INTRODUCTION

Consistency sounds like something to strive for. After all,
who would strive for inconsistency? Consistency is widely
praised in guidelines and principles, but with some scrutiny,
it becomes clear that consistency is hard to define and
measure. Kellogg discusses several dimensions of
consistency (including platform/devices) [kell87, kell89]
and both Kellogg and Grudin [grud89] note that a design
can be internally consistent within an application, or
externally consistent with other applications. Grudin sums it
up well by noting: "Thus, there may be no simple approach
to determining the relative significance of consistency
along various dimensions and levels." (p.1172) Caulton and
Dye [caul97] concluded that consistency between
applications is less important that task-appropriateness
when applications are specialized.

Although consistency may be hard to design for and
measure, problems of consistency may be easier. Reisner
[reis87, reis90] attempts to formally describe inconsistency
to predict where users will have problems using a system.
Grudin [grud89] gives several informal examples where
inconsistent design choices are more usable than consistent
ones, and any designer can tell of cases where rules have
been broken to address a specific user-task need. Given
that, I will define "unintentional inconsistency" as the
situation where two parts of a design differ for no good
reason. For example: different terms used for the same
concept; different layouts on different displays; different
functions available in equivalent contexts. All these are
unintentional, mind you, and probably due to limitations in
resources, tools, techniques, and so on.

PROJECTS
I have been involved in several projects in which avoiding
unintentional inconsistency was a primary motivation:
SETOPT [perl85a] generated manual entries and parsers for
UNIX command line options, with the goal of using the
same information for both. The techniques used in SETOPT
were formalized in [perl85b] and [perl89]: templates for
targets (devices, displays) were instantiated with values of
several variables. A change of a template resulted in global
(consistent) changes; a change in variable would result in
changes wherever the variable was used. Even without
templates, using rules for display, objects could be rendered
automatically to create displays [perl87].

More recently, the techniques have been applied to the
design of FirstSearch, an online research service [perl00,
perl02]. The system architecture - created with the primary
goal of being able to change the design with inevitable
changes in requirements - separates semi-structured
[perl93] information into functional, display, and language
partitions. Structured information is inserted into templates
that dynamically generate displays in multiple languages,
for multiple platforms, for multiple user types with
individual preferences.

The technique is flexible. New translations of the service
have been added by translating about 9000 partitioned
words and phrases into Arabic, Chinese (2 dialects),
French, Japanese, Korean, and Spanish, generally with no
changes to the display or functionality. Even within
English, the partitioning helps promote consistency in
language usage. By adding new templates for larger
displays, new platforms have been accommodated in a few
hours of work including Web TV and the character-based
Lynx browser. By adapting the main template and its
components, most Section 508 accessibility requirements
were met, leaving remaining requirements to changes to
functional areas. Minor limitations of some devices have
been accommodated with minimal specifications, for
example: early Netscape browsers could not display Greek
entities like α, so they could be shown as text (alpha)
instead of a symbol (α):

[browser=Netscape4]
alpha = alpha
beta = beta
...
omega = omega

More substantial display limitations are accommodated
with conditional display of functional components; all
attributes of objects are available during display generation.

MEASUREMENT
Along with the partitioning of structured information comes
the ability for metrics on that information. Metrics have
been used to avoid unintended inconsistency. A simple
example is to measure, for each term (e.g., Search), how
many times it appears in values compared to how many
times a reference to it appears. A more sophisticated
example involves checking device-specific templates to
ensure that they contain the same references to parts to

include; this has been used during "facelifts" to the user
interface.

CONCLUSIONS
Some software development techniques are especially well
suited to ensuring consistency in user interfaces, even while
allowing flexibility in the efficient specification of
inconsistency where the designer intends it. I do not think
that cross-platform development presents any different
challenges than, say, customizing for different types of
users. What is not clear to me are the types of changes that
are necessitated by cross-platform development compared
to other dimensions of change. Being able to anticipate
those would help estimate and allocate resources.

REFERENCES
The format used to the references in this essay are
intentionally inconsistent with ACM style.

[caul97] Caulton, David A. and Dye, Ken. Do Users
Always Benefit When User Interfaces Are
Consistent? Proceedings of the HCI'97 Conference
on People and Computers XII, 57-66, 1997.

[grud89] Grudin, Jonathan. The Case Against User Interface
Consistency. Communications of the ACM, 32:10,
1164-1173, 1989.

[kell87] Kellogg, Wendy A. Conceptual Consistency in the
User Interface: Effects on User Performance.
Proceedings of IFIP INTERACT'87: Human-
Computer Interaction, 389-394, 1987.

[kell89] Kellogg, Wendy A. The Dimensions of
Consistency, in [niel89].

[niel89] Nielsen, Jakob (Editor). Coordinating User
Interfaces for Consistency. New York: Academic
Press, 1989.

[perl85s] Perlman, Gary. SETOPT: A UNIX Command
Line Options Parser Generator. Proceedings of the
Winter USENIX Conference, p.160-164, 1985.

[perl85b] Perlman, Gary. Multilingual Programming:
Coordinating Programs, User Interfaces, On-Line
Help and Documentation. ACM Fourth
International Conference on Systems
Documentation, 123-129, 1985.

[perl87] Perlman, Gary. An Axiomatic Model of
Information Presentation. Proceedings of the
Human Factors Society 31st Annual Meeting,
1229-1233, 1987.

[perl89] Perlman, Gary. Coordinating Consistency of User
Interfaces, Code, Online Help, and Documentation
with Multilingual/Multitarget Software
Specification, in [niel89].

[perl93] Perlman, Gary. Information Retrieval Techniques
for Hypertext in the Semi-Structured Toolkit.
Proceedings of ACM Hypertext'93, 260-267, 1993.

[perl00] Perlman, Gary. The FirstSearch User Interface
Architecture: Universal Access for any User, in
many Languages, on any Platform. Proceedings of
the 2000 ACM Conference on Universal Usa
bility, 1-8, 2000.

[perl02] Perlman, Gary. Achieving Universal Usability by
Designing for Change. IEEE Internet Computing,
6:2, 46-55, 2002.

[reis90] Reisner, Phyllis. What is Inconsistency?
Proceedings of IFIP INTERACT'90: Human-
Computer Interaction, 175-181, 1990.

[reis93] Reisner, Phyllis. APT: A Description of User
Interface Inconsistency International Journal of
Man-Machine Studies, 39:2, 215-236, 1993.

