
ACM SIGSOFT, SOFTWARE ENGINEERING NOTES

	

Vol 5 No 4 October 198 0

*** Two High-Level Skills for Programming : ** *
A comment on R . L . Glass' The Importance of the Individual"

Gary Perlman

Page 9

Glass (ACM SIGSOFT Software Engineering Notes . 5 3, pp . 48-50, Jul y
19801 points out huge individual differences in programmer abilities .
He also bemoans the lack of aptitude tests to identify goo d
programmers . I think that the reason for this lack lies i n
methodological problems in devising aptitude tests of any kind . Despit e
their ubiquity, the so-called intelligence tests and scholastic aptitud e
tests are poor predictors of future performance in school and other area s
(except of performance on similiar tests, where the success i s
moderate) .

More plausible than the empirical approach is the use of theoretica l
models to describe the skills necessary for coding and debuggin g
programs . I think cognitive psychologists can contribute to th e
identification of good programs and the betterment of mediocr e
programmers by using models of thought to explain trht certai n
attributes are desirable .

I base my opinions on general human information processing limitation s
of people in general, and therefore programmers in particular . Th e
major limitation of human programmers is their limited consciou s
memory capacity . We have the ability to keep track of only a few idea s
and their interactions at one time . This implies that programmers
should attack only small tasks that can easily be conceptualized . Since
the tasks we are interested in are not small . they have to be made to
appear small by dividing them into some number of smaller tasks, an d
then conquering the smaller tasks . This technique has come to b e
called divide and conquer . However, some software engineers hav e
rightly suggested that the division of any module should not be greate r
than about six parts . The reason for this is that if a module is divide d
into more, then keeping track of all those parts will also overloa d
conscious memory . These points indicate that good programmers nee d
the ability to divide problems intelligently so that the conquering of th e
parts is simplified . I think testing for this trait would prove to be a goo d
indicator of programming capability .

People are bad at hypothesis testing, which is largely a learned skill .
Applied to program development, notably testing and debugging, goo d
programmers need skills in proper experimentation . To locate an d
correct a bug, we make changes in input or to the program itself an d
note changes in output. The need for experimental control in testin g
and debugging implies the need for stepwise refinement of program s
(adding exactly one module between tests) . This restricts the source o f
new bugs to the new module . If more than one module is added for a
test , then the source of the error cannot be determined becaus e
(experimentally speaking) more than one factor has been varied at one
time. (In statistics this is called perfect confounding .)

I have suggested two skills needed for productive programming based
on psychological principles .

I . The ability to code large programs requires the ability t o
divide (possibly recursively) a program intelligently int o
easily conquered parts .

2 . The ability to test and debug requires (at least implicit)
knowledge of the logic of experimental hypothesis testing .

Neither of these skills comes naturally to most people, but they can b e
taught . Detection of these skills should be useful for predictin g
programmer productivity .

Department of Psychology

	

Gary Perlma n
University of California, San Dieg o
La Jolla . CA 9209 3

Response from the Editor :

Programmers seem to have two qualitatively different types of skill s
they use in writing programs . The first type involves logical, linear, an d
rational skills, while the second involves creative and intuitive skills .
(Note that there is some evidence to suggest that these two skill type s
arc often associated with the activities of the left hemisphere and th e
right hemisphere of the brain, respectively, although that association no t
vital to my comment .) I once wondered whether one of these skil l
types was more important in creative programming endeavors . but the n
concluded that a balence of these skills is required . Logical/linear skill s
are essential to permit the orderly' maintenance of a vast collection o f
details and their interrelationships . However, creative/intuitive skills ar e
vital to large and complex efforts in which creative use of structure an d
decomposition is required when the problem becomes too big to b e
handled as a single entity . Someone who is strong only in logical/linea r
skills may he an excellent programmer in the small, but may have grea t
difficulty in coping with large and real systems in their entirety .
Someone who is strong only in creative/intuitive skills is unlikely t o
become a good programmer in the first place, especially if there is a n
intrinsic dislike of detailed mathematical thinking . However, the reall y
disciplined imaginative designer/programmer seems to be someone wit h
all these skills well developed and well in balance . Our educationa l
process should consider it a challenge to help each individual to brin g
these sometimes opposing skill types into harmony' . (If you missed it ,
see my somewhat related piece on the psychology of abstraction . SEN 4
I, p . 21, January 1979 .)

	

PGN .

Response from Gary Perlman:

Yes, people good at the design of large programs are not necessarily
good at writing modules, and vice versa . This predicts a version of th e
Peter Principle that probably occurs in programming : a good coder i s
promoted to designer and becomes incompetent . GP .

