
A C M SIGSOFT, SOFTWARE E N G I N E E R I N G N O T E S Vol 5 No 4 October 1980

*** Two High-Level Sk i l l s for Programming: ***
A comment on R. L. Glass' "The Importance of the Individual"

Page 9

Glass (A C M SIGSOFT Software Engineering Notes. 5 3. pp. 48-50. July
1980) points out huge individual differences in programmer abilities
He also bemoans the lack o f aptitude tests to identify good
programmers. I think that the reason for this lack lies in
methodological problems i n devising aptitude tests o f any kind. Despite
their ubiquity. the so-called intelligence tests and scholastic aptitude
tests are poor predictors o f future performance in school and other areas
(except o f performance o n similiar tests. where the success is
moderate).

Mo re plausible than the empirical approach is the use o f theoretical
models to describe the skills necessary for coding and debugging
programs. I think cognitive psychologists can contribute to the
identification o f good programs and the betterment o f mediocre
programmers by using models o f thought to explain w/ycertain
attributes are desirable.

I base my opinions on general human information processing limitations
o f people in general. and therefore programmers in particular. The
major l imitation o f human programmers is their l imited conscious
memory capacity. We have the ability to keep track o f only a few ideas
and their interactions at one time. This implies that programmers
should attack only small tasks that can easily be conceptualized. Since
the tasks we are interested in are not small. they have to be made to
appear small by dividing them into some number o f smaller tasks. and
then conquering the smaller tasks. This technique has come to be
called divide and conquer. However, some software engineers have
rightly suggested that the division o f any module should not be greater
than about six parts. The reason for this is that if a module is divided
into more, then keeping track o f all those parts will also overload
conscious memory. These points indicate that good programmers need
the ability to divide problems intelligently so that the conquering o f the
parts is simplified. I think testing for this trait would prove to be a good
indicator o f programming capability.

People are bad at hypothesis testing. which is largely a learned skill.
Applied to program development, notably testing and debugging, good
programmers need skills in proper experimentation. To locate and
correct a bug, we make changes in input or to the program itself and
note changes in output. The need for experimental control in testing
and debugging implies the need for stepwise refinement o f programs
(adding exactly one module between tests). This restricts the source o f
new bugs to the new module. I f more than one module is added for a
test . then the source o f the error cannot be determined because
(experimentally speaking) more than one factor has been varied at one
time. (In statistics this is called perfect confounding.)

I have suggested two skills needed for productive programming based
on psychological principles.

I . The ability to code large programs requires the ability to
divide (possibly recursively) a program intelligently into
easily conquered parta.

Gary Perlman

2. The ability to test and debug requires (at least implicit)
knowledge o f the logic o f experimental hypothesis testing

Neither o f these skills comes naturally to most people. bu t they can be
taught. Detection o f these skills should be useful for predicting
programmer productivity.

Department o f Psychology Gary Perlman
University o f California. San Diego
L a Jolla. C A 92093

Response from the Editor:

Programmers seem to have two qualitatively different types o f skills
they use in writing programs. The first type involves logical. linear. and
rational skills. while the second involves creative and intuitive skills.
(Note that there is some evidence to suggest that these two skil l types
are often associated with the activities o f the left hemisphere and the
right hemisphere o f the brain, respectively. although that association not
vital to my comment.) I once wondered whether one o f these skil l
types was more important in creative programming endeavors, but then
concluded that a balence o f these skills is required. LogicaVlinear skills
are essential to permit the orderly maintenance o f a vast col6ct ion o f
details and their interrelationships. However, creative/intuitive skills are
vital to large and complex efforts in which creative use o f structure and
decomposition is required when the problem becomes too big to be
handled as a single entity. Someone who is strong only in logical/linear
skills may be an excellent programmer in the small, bu t may have great
difl iculty in coping with large and real systems in their entirety.
Someone who is strong only in creative/intuitive skills is unlikely to
become a good programmer in the first place. especially if there is an
intrinsic dislike of detailed mathematical thinking. However. the really
disciplined imaginative designer/programmer seems to be someone with
all these skills well developed and well in balance. Our educational
process should consider i t a challenge to help each individual to bring
these sometimes opposing skil l types into harmony. (If you missed it.
see my somewhat related piece on the psychology o f abstraction. S E N 4
1, p. 21, January 1979.) PGN.

Response f rom Gary Perlman:

Yes, people good at the design o f large programs are not necessarily
good at writing modules, and vice versa. This predicts a version o f the
Peter Principle that probably occurs in programming: a good coder is
promoted to designer and becomes incompetent. GP.

