
Gary Perlman
OCLC Online Computer
Library Center

Achieving Universal
Usability by
Designing for Change

Partitioning function-, language-, and platform-specific

elements of an interface into pieces that can be incorporated

into templates lets developers adapt to requirement changes

and provides universal usability.

When people discuss usability,
they usually mean it narrow-
ly — usable by a target market

— but the Web is available to everyone
with the economic means for a computer
and a modem. While that still does not
include most people, it does include users
of different browsers on different operat-
ing systems, users who speak different
languages, who have different physical
capabilities, and who have different levels
of experience with the Web. A universal-
ly usable interface is able to adapt to all
these differences, and more, as they arise.

At the OCLC Online Computer Library
Center, pent-up demand for new features
in our Web-based FirstSearch biblio-
graphic and full-text retrieval system
(firstsearch.oclc.org) produced more
requirements than we could effectively
implement and scale. Moreover, many of
the requirements were underspecified, so

we anticipated change during review. In
response to this, we used a methodology
to enable us to easily adapt design deci-
sions to meet new usability requirements.
In our methodology, developers represent
and implement design decisions in a sin-
gle place so that any changes are imme-
diately propagated system-wide.

We partition function-, platform-, and
language-specific decisions into semi-
structured information structures that we
insert into templates to build HTML
pages dynamically. This partitioning lets
many types of contributors make fre-
quent changes independently. As this
article shows, the system adapts easily to
changing requirements for user inter-
faces, new languages, and accessibility.
Because we used the same methodology
to address environmental variables, the
universal usability design supports
ongoing adaptations to the search sys-

46 MARCH • APRIL 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

U
sa

bi
li

ty
 a

nd
 t

he
 W

eb

tem at a generally lower cost than adapting to
each variable in isolation.

System Requirements
In 1997, OCLC began developing a new version of
the FirstSearch system, which is used by more than
15,000 libraries worldwide. The difficulty of adding
our new features to the old system, and the relative
liberation of a more dynamic Java development
environment, led to what Fred Brooks might call a
second-system effect: We spent about a year devel-
oping the detailed requirements and trying to
incorporate every feature anyone wanted to add.1

Design options were unclear at that point because
we were charting many new territories, including

� new functionality,
� a new Web server and search engine (OCLC

SiteSearch, which was being developed in par-
allel with FirstSearch requirements),

� a new programming language (Java), and
� a new version of the operating system on

new hardware, including a new high-perfor-
mance file system (later discarded for perfor-
mance problems).

By early 1998, we had defined several general
requirements for the new user interface. Although
we had devoted considerable effort to the detailed
requirements, we expressed cross-platform, text-
only, multilingual, and accessibility and help
requirements with little more than a sentence each.
This lack of detail concerned us that different peo-
ple would have different ideas about the right way
to proceed in each, and that there would be pres-
sure to be able to make changes, sometimes large.

Platform Independence
As part of the multiplatform requirement, the sys-
tem needed to work on all current browsers. We
proposed supporting the 4.x versions of Netscape
Navigator and Microsoft Internet Explorer (MSIE).
Initially, we wanted to require JavaScript and cas-
cading style sheets (CSS), but Navigator 4.0 had
limited support for features we could provide by
other means. Realizing that many sites could not
or would not upgrade their browsers, we ultimate-
ly chose to support the 3.x versions of Navigator
and Explorer, although their limited functionality
required some compromises. We did not want to
support the least-common denominator but rather
to take best advantage of each platform’s features.
We also wanted to be able to work around the
bugs on different versions of the browsers.

We committed to supporting systems with
JavaScript enabled, disabled, or missing. We also
agreed to support different screen sizes across dif-
ferent hardware and operating systems, including
Windows and Macintosh, and to test 256-color
screens and for grayscale contrast. In addition to
the graphical user-interface browsers, we also need-
ed to support a text-only version of the search sys-
tem that could run over telnet, which provided the
only means of access for a small number of high-
frequency users. We thus chose to replace First-
Search’s existing telnet version with an interface
that worked reasonably well with the text-based
Lynx HTML browser that would run on our server.

Multiple Language Support
We planned to support the interface and online
help in three languages initially: English, French,
and Spanish. We hoped this would be easier than
our multilingual effort had been in the old Web-
based version, which was not designed with trans-
lation in mind (so the same strings, such as Search,
appeared in hundreds of places).2 We had to iden-
tify all the places where search was used as an
action, as a label, etc., and translate accordingly.

Accessibility and Levels of Users
We had listed complying with the Americans with
Disabilities Act (ADA) as a requirement, although
we had no knowledge of what that entailed — not
least because there were no defined standards at
the time. We had thought the text-only Lynx
interface would serve the purpose, but later found
that while text-screen readers serve some users,
many others employ specially adapted graphical
browsers. In addition to making the system useful
for users with varying abilities and needs, we
planned multiple search modes to support users
with different levels of expertise, and to allow
library and user customization.

Group Coordination Issues
As we began the process of implementing the
requirements we had gathered, we assigned dif-
ferent groups primary responsibility for the differ-
ent dimensions of the user interface:

� marketing, for requirements and terminology,
� development, for functionality,
� database, for loading new databases,
� graphic design, for icons, fonts, colors, and

layout,
� usability, for interaction design and re-

design, and

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 47

Achieving Universal Usability

� documentation (including translation), for
onscreen help, and online and printed help.

Of course, this is an oversimplification because
many groups contributed to multiple dimensions,
but few individuals considered all these concerns
when working on specific tasks. One of our coor-
dination goals was therefore to make sure that all
elements worked well together. We had to ensure,
for example, that:

� nonportable platform-specific HTML or lan-
guage-specific terms were not used in Java
code or database configuration files,

� graphic or user-interface designs worked on
all platforms, particularly if they used
JavaScript, and

� terminology was used consistently in all parts
of the system (including help) and that the ter-
minology physically fit in the space allocated
in all languages on all platforms.

All these were required to allow us to be able to
make changes easily and in one place so they
would change all parts of the system.

Design Approach
Because of the multiple dimensions involved, we
needed a generalized approach to ensuring uni-
versal access to FirstSearch.6 Our highest priority
goal was to be able to adapt the user interface to
the inevitable requests for changes that would
arise from future usability, performance, and func-
tionality considerations. With so many unknowns,
the interface design had to be incrementally scal-
able, starting with a simple model that we could
expand as we understood more. Previous experi-
ence suggested that partitioning the information
in the system into orthogonal information sets and
generating screens by forming the cross-product
of those sets would facilitate incremental elabora-
tion and optimal redesign.3 We chose to partition
the information into three main sets:

� functional (the specific functions for database
selection, search, and results);

� platform-dependent (aspects that adapt the dis-
play to different platforms); and

� language-dependent (aspects used for transla-
tion).

The partitioning method is similar to a word-pro-
cessing mail merge, but rather than inserting
address information into letter and label templates,
we insert function attributes into platform-specif-
ic templates for Web pages.

Functional Partition
As the first step in developing FirstSeach’s user
interface, we applied information design to iden-
tify key attributes of FirstSearch pages. A page is
an object with the information (attributes and
methods) used to construct what a user observes
and does on a single Web page. The canonical
sequence of pages in a FirstSearch session is data-
base-selection, search, and results. Initially, we
were not concerned with details about specific
pages in the system; instead, we wanted to identi-
fy general elements that would affect new pages
as well as existing pages that were to be merged
with others or deleted. Similarly, we weren’t over-

48 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Usability and the Web

[expert]
pagename = expert
pagetitle = &Lang.pagetitle.expert;
pagelabel = &Lang.pagelabel.expert;
tips = &Lang.tips.expert;
status = &Lang.status.expert;
controls =

&Style.dbinfo.gadget;
&Style.scanindex.gadget;
&Style.thesaurus.gadget;
&Style.news.gadget;

action = QUERY?searchtype=expert
term = termexpert
index = indexexpert
focus = termexpert
panel =

&Style.dialog.begin;
&Pages.basic.submit;
&Pages.expert.searchbox;
&Pages.expert.index;
&Pages.advanced.limits;
&Pages.advanced.options;
&Pages.basic.submit;

&Style.dialog.end;
searchbox =

&Style.dialog.rowbegin;
&Style.font.labelbegin;

<label for=termexpert>
&Lang.label.find;

</label>
&Style.font.labelend;
&Style.dialog.elementbegin;

<textarea name=termexpert id=termexpert>
&termexpert;

</textarea>
&Style.dialog.elementend;

&Style.dialog.rowend;

Figure 1. Expert search page object specification of the [expert] sec-
tion in Pages.ini, the configuration file for the functional partition.
Entities are often defined in terms of other entities for reuse and
consistency. Language-specific terms are defined in the language
files, and platform-specific styles are defined in the Style.ini file.

ly concerned with specific page attributes because
we wanted it to be easy for us to add, delete, or
change attributes.

In the end, we identified attributes common to
every page in FirstSearch:

� pagename: an internal identifier,
� pagetitle: a title displayed to users,
� pagelabel: a short phrase for links in menus,
� tips: on-screen help tips,
� status: on-screen status information,
� controls: page-specific controls,
� action: a form action, and
� panel: a main form panel.

Individual pages can also have any of about 10
other specialized attributes, for processing form
elements in the panel, handling errors, and so on.
Attributes are very flexible because they can con-
tain constant text and any number of entities.

To make all pages platform- and language-
independent, we extracted the platform-dependent
parts into a style file and the language-dependent
parts into a language file. We then replaced these
extracted parts with entities defined in configura-
tion files (called INI files). We placed the resulting
platform- and language-independent page defini-
tions in the pages.ini configuration file, which
includes a section for each page. The resulting def-
inition for the expert search page, for example,
looks like the specification in Figure 1, which
appears to users like Figure 2. For reuse and con-
sistency, entities are often defined in terms of other
entities. The expert panel uses the same submit
buttons as the basic search screen
(&Pages.basic.submit;), for example, and the
same limits and options as the advanced search
screen. Figure 3 shows the specification for a page
that displays detailed records.

Entity Substitution and Dynamic HTML
In OCLC SiteSearch, variables are called entities.
Entities can be scalar variables, values from config-
uration files, and calls to Java methods with access
to the user’s session information. Many of the attrib-
utes in INI files are references to language entities
(such as &Lang.tips.expert;) defined in language
files (one for each language). Some at-
tributes are style entities (such as &Style.dia-
log.begin/end;) that mark the beginning and end
of structurally meaningful parts. Other entities
include references to parts of pages, which allow us
to reuse modular definitions (for example, all search
screens use the basic submit buttons defined in

&Pages.basic.submit;). Special-purpose attributes
indicate the names of terms and indexes used on
search screens, where to focus the cursor if
JavaScript is available, and so forth.

When FirstSearch displays a page, it inserts the
associated attributes into a template for the page
type. Current values of entities are substituted recur-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 49

Achieving Universal Usability

[record]
pagename = record
pagetitle = &Lang.pagetitle.record;
pagelabel = &Lang.pagelabel.record;
tips = &Lang.tips.record;
status = &Lang.status.record;
controls =

&Style.thesaurus.gadget;
&Style.ill.gadget;
&Style.holdings.gadget;
&Style.email.gadget;
&Style.print.gadget;

action = FETCH?fetchtype=record
panel =

&Style.dialog.begin;
&Style.dbsuggest.gadget;
&Style.navigate.gadget;
&Style.record.gadget;
&Style.navigate.gadget;

&Style.dialog.end;

Figure 3. Detailed record page object. In this speci-
fication from Pages.ini, entities with names ending
with “gadget” have values that invoke classes to
generate HTML.

Figure 2. Expert search screen.The screen is constructed from the
expert search page object specification based on the current data-
base, user preferences, and account settings.Accessibility features
show tips on input elements.

sively. While we could have chosen many methods
to generate dynamic displays and adapt to different
platforms, we picked entity substitution as a matter
of convenience. We considered using XML, CSS, and
Java applets, but the SiteSearch Web server already
provided many of the features we needed, whereas
XML was untried, CSS was not supported by all
browsers, and Java was unacceptable to many users
because of security or performance concerns.

Although the use of proprietary SiteSearch code
might seem to limit the methodology’s generality,
many (if not most) development environments can
read configuration files and substitute variables.
Recently, we added the capabilities to Tomcat
servlet containers (jakarta.apache.org/tomcat) to
move to a less proprietary environment.

Practical Partitioning
With the page object defined, the most difficult
aspect of partitioning the language and style infor-
mation was locating the information and then per-
forming the process consistently. We found it near-
ly impossible to explain to developers why and
how to keep this information separate, perhaps
because it required an understanding of transla-

tion, cross-platform development, accessibility
issues, and general usability considerations.
Added to that, the terminology and formats were
being developed in parallel, so developers had to
develop more abstract methods.

Instead, we had developers create screens using
“untamed” English and HTML and then partitioned
the information for them. We extracted platform-
specific parts and replaced them with style entities
for runtime substitution based on the user’s plat-
form and preferences (Figure 4). To international-
ize the design, we moved language-specific strings
into the language files, replacing them in the tem-
plates with entities to create language-independent
HTML. Later, we inserted the language-specific
values into the HTML by substituting language
entity values in the user’s language (Figure 5).
During the process, we could review the choice of
language and interface design and, later, centralize
design decisions so that these could be changed.

Platform-Dependent Partition
The page object contains references to platform-
dependent parts, which will display differently on
different platforms. Many factors affect how the
interface design is presented to users, including
browser type and version, operating system, screen
size, and whether JavaScript is enabled. For exam-
ple, if JavaScript is available, a pop-up Help win-
dow can open at a size that works with the screen
dimensions and shows shortcut keys based on the
operating system.

Many methods are available for adapting to dif-
ferent displays, ranging from using lowest-com-
mon denominator features to developing unique
subsites for different displays or dynamically cus-
tomized displays. Given the number of platforms
planned for FirstSearch, and the many differences
among them, dynamic generation of HTML was an
obvious choice.

The method we chose was designed to abstract-
ly represent display structure separately from the
final rendering. For example, an untamed error
message might be initially marked up as

Something bad happened

Styles could be replaced by entities:

&ErrorBegin;
Something bad happened

&ErrorEnd;

50 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Usability and the Web

Manually
extract

formats/styles

Style.ini

Platform-
independent

HTML

Dynamically
substitute style

entities

Figure 4. Partitioning platform-dependent informa-
tion.Any platform-specific HTML is moved out of
Java code, HTML, or language strings into style
entities that are dynamically substituted when
pages are generated.

Manually
extract

language strings

Language files
en.ini, fr.ini, ...

Language-
independent

HTML

Dynamically
substitute language

entities

Figure 5. Partitioning language strings. Natural lan-
guage-specific strings are moved out of Java code
and HTML into language entities that are substi-
tuted when pages are generated.

and defined in style entities:

[styles]
ErrorBegin =
ErrorEnd =

A line in a search form might be marked up as:
&SearchFormBegin;

...
&SearchLineBegin;

&LabelBegin;
Find:

&LabelEnd;
&FormElementBegin;

<input type=text name=terms>
&FormElementEnd;

&SearchLineEnd;
...

&SearchFormEnd;

We have simplified these examples to better explain
the methods used in FirstSearch; the real versions
have many gory details. Because entities are sub-
stituted into the outgoing HTML, changing the def-
inition of structural entities changes the HTML that
will be generated. On graphical browsers, the error
message above might be made larger or smaller to
match the screen size, or it might be preceded by an
error icon and appear in a large red font. On a non-
graphical browser such as Lynx, the error message
could be bold and surrounded by lines.

The fine granularity of control and the likeli-
hood of editorial changes made it undesirable to
code these changes in Java. Instead, we adopted a
declarative method of specifying custom values.
When a session starts, FirstSearch stores all the
potential customizing variables, such as browser
attributes, in about 30 entities. The system then
reads default entities (about 50) from an initializ-
ing configuration file and sets customizing enti-
ties based on values read from conditional sections
in the style INI files.

Ordinary INI files contain named sections (such
as [styles]) that list entity definitions. Condi-
tional sections are named by entity-value pairs —
the browser entity might be Mozilla, MSIE, or
Lynx, for example — and conditional styles could
be defined for each browser value, or for those that
require special settings:

[styles]
section* = browser
[browser=Lynx]

ErrorBegin = <hl>
ErrorEnd = </hl>
[browser]
ErrorBegin =
ErrorEnd =

The reference to section* causes the system to
read the conditional section named browser. If the
browser is Lynx, the system uses the section called
[browser=Lynx]; otherwise, it uses the default
[browser] section. We could also add other sets
of conditional sections. If we wanted the error
message font size to depend on the screen size, for
example, we could insert an entity into the error
message style and set the value of the entity in
conditional sections:

[styles]
section* = browser
section* = screensize
[browser=Lynx]
ErrorBegin = <hl>
ErrorEnd = </hl>
[browser]
ErrorBegin = <font color=red
size=&ErrorSize;>
ErrorEnd =
[screensize=large]
ErrorSize = 5
[screensize=medium]
ErrorSize = 4
[screensize]
ErrorSize = 3

Once conditional sections are set up, we can eas-
ily add conditions to set more than 100 entities. Set-
ting these in INI files lets us view the changes while
the system is running. Users can thus reread the INI
files and reset entities without changing any code
or retracing steps to the current screen. Another
advantage is that all the peculiarities of particular
platforms are specified together. For example, the
color scheme for MSIE 3 is different than for the
rest of the system because that browser version does
not support changing text color in a hot link.

Language Partition
We internationalized FirstSearch by moving all
language-specific terms (about 5,000) into INI files
and replacing those terms with entities that
referred to the appropriate section and entity
name. In FirstSearch language files, sections serve
to distinguish how and where some text will be
used. For example, all diagnostic messages reside

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 51

Achieving Universal Usability

in a section called [msg]:

[msg]
bad = Something bad happened
nohits = Your search matched no records
nojs = Your browser doesn’t support
JavaScript

Users access entities in language files by nam-
ing the entity (Lang) followed by the section
(msg) and the variable name (bad). This error
message’s platform- and language-independent
version therefore becomes

&ErrorBegin;
&Lang.msg.bad;

&ErrorEnd;

When users choose new languages, FirstSearch
associates entities in the appropriate language INI
file with their session. Figure 6 shows the French
version of the expert search interface.

Structure. Page title, tips, and status are all sections
in the language file that contain variables defining
the page title, on-screen help tips, and status for
each page. Storing the variables in the same section
makes it easier to keep the text consistent for dif-
ferent screens. Developers must, however, place
page attributes in different sections of different INI
files. To make it easier for the user-interface and

database groups to work together, we separated the
user-interface language INI file from a language file
for database-specific terminology (which accounted
for about two-thirds of the language used in the
system). This approach reduced contention while
both files went through hundreds of revisions.

English as the second language. Although we did the
development in English, moving strings into the Eng-
lish language INI files for later translation, there was
an initial translation step that took almost as long as
the translation into Spanish and French. The initial
language was a dialect of English used by librarians
and developers of systems for searching library mate-
rials; call it Jargonese. Some of the terminology was
inappropriate for library-naive users, all the more
common because of the advent of the Web. Thus, a
screen might be called “history” internally, but users
would know it as “previous searches.”

Finding entities and previewing translation. To
help translators and documentation writers deter-
mine where an entity was defined, we created an
entity language in which the value of an entity was
the section and variable name where it was defined
(for example, &Lang.pagetitle.history; would
be displayed as pagetitle~history). Then they would
know that the string displayed in English as “pre-
vious searches” was the history variable in the
pagetitle section. This method also allows page
name changes to be propagated automatically
throughout the system, including documentation.

We included a facility for dynamically reload-
ing entity values on the current screen, which
allowed translators to see their translations with-
out starting a new session. Preview was important
for ensuring that the edits fit and did not break
any embedded HTML or entities. Marketing staff
even used the mechanism as they replaced Jar-
gonese with English.

Adding non-Western languages. Because all the
natural language in the system is localized, our
current efforts to translate FirstSearch into Chinese
(two character sets) and Japanese using Unicode
(UTF-8 encoding) are reasonably straightforward.
The only change we have had to make to the sys-
tem is to include charset=UTF-8 in the HTTP
header when displaying a non-Western interface.

Template-Based Page Generation
We based the first prototype systems on ad hoc
flat-file databases accessed with Perl scripts and
used the semistructured toolkit to generate HTML

52 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Usability and the Web

Figure 6. French version of the expert screen. Users can change lan-
guage at the bottom of the left navigation menu.The only change in
the system is that the language entities come from cached sections
of the selected language file.

files.4 Eventually, the information about pages
migrated into semistructured INI files, and we
moved from static to dynamically generated HTML
files. Keeping the pages and attributes in an easi-
ly editable format was an important feature as
they evolved and gradually increased in complex-
ity over time. The ease with which we were able to
change the software highlights the independence
of the methods we used.

FirstSearch generates HTML pages by inserting
page-specific entities into templates like the one
shown in Figure 7. We have created a graphical-
browser version, a text-only Lynx version, a print-
er-friendly version, and others. Templates can (and
perhaps should) start as simple renderings of some
attributes, but they can be augmented easily for scal-
ing and major changes. To move the controls for all
pages, for example, we only need to move one line.

Many changes are unanticipated, so the flexibil-
ity of being able to make global changes is highly
desirable. Initial versions of the FirstSearch interface
were framed, for instance, but we decided to evalu-
ate an unframed version because of server transac-
tion costs. Creating an unframed version of the
interface took about an hour, and the performance
results motivated us to change the entire system —
which took one person less than a day to do.

The specification in Figure 7 is a simplified tem-
plate for the Lynx interface, which is simpler than
the graphical version. Note that most page attribut-
es have been assigned to entities. Figure 8 shows
the user’s view of the screen. This Lynx template is
one of many possible renderings of the parts of
pages. One advantage the interface’s framed ver-
sion offered was that the main frame contained all
and only the information that users would want to
print. When the framing was removed, it took about
an hour to create a template for a printer-friendly
format that did not show menus and controls.

Because templates can be defined hierarchical-
ly, they can share reusable parts. This can minimize
the cost of creating new versions of templates, say,
for a version that takes full advantage of CSS. At
various times, we have designed, created, and
viewed completely different interface designs that
were fully functional systems. Small changes, such
as placing an entity value on every page in the sys-
tem, require a one-line change. When quality assur-
ance staff wanted to add specially formatted com-
ments to delimit logical sections of the screens (to
help highlight differences in regression test scripts),
the change took less than an hour. Figure 9 (next
page) shows a combined view of dynamic HTML
page generation by inserting entities into templates.

Accessibility Issues
Initially, we thought that the text-only Lynx ver-
sion would be the best platform for a sight-
impaired user’s screen reader. After interviewing
one of our staff, who is blind and uses Web-
aware HTML-reading software, we broadened our
approach to include all browsers. For the Lynx
version, we used a simpler vertical page template,
took full advantage of the fact that Lynx inter-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 53

Achieving Universal Usability

<html pagename=“&pagename;”>
<head>

<title>&pagetitle;</title>
</head>
<body>

&pagetips;
&pagestatus;
<form method=“POST” action=“&pageaction;”>

&pagepanel;
&pagecontrols;
&Style.Menu.gadget;

</form>
</body>
</html>

Figure 7.Template for Lynx displays. FirstSearch displays HTML
pages by substituting entity values, values of values, and so forth —
sometimes to 12 levels deep — into templates like this one. Even the
template, itself, is an entity (&Style.template.lynx;).

Expert Search
Current database: WorldCat

Type search terms and choose limits.
Click on Search.

[Search] [Clear]

Indexed in: [Keyword (kw:)_________]
Limit to:
Year 1990-______
Language [English___________]
Libraries [All___]
Document Type [Books________]
Library Code ___________
[_] Items in my library (OCO)
Rank by: [Default__________]
[Search] [Clear]

[index] [subjects] [news] [help]

Figure 8. Expert screen for Lynx text-browser users.
The navigation menu (not shown) is appended to
the display.The Lynx layout of controls is adapted
to better match the linear access to form elements.

preted the table row tag <TR> as starting a new
line, and set Lynx-only format entities (such as
space, bar, break, line, paragraph, and comment)
in a conditional INI file section.

Because the HTML for formatting the display
is localized in style files, we can make most
changes centrally to adapt to the Web Accessibil-
ity Initiative (WAI) guidelines (and later, U.S. Sec-
tion 508 rules). Microsoft’s Internet Explorer 4+
provides substantial support for accessibility-ori-
ented tags, including some features that are use-
ful for all users:

� Title. The title attribute provides extra infor-
mation about the element it is attached to.
FirstSearch uses title tags for input fields to
provide more detailed prompts, and on links to
explain where they will lead the user. (See the
text areas in Figures 2, 6, and 8.)

� Label. The label tag allows a label to be more
formally associated with a form element with
which it is logically associated. Web screen
readers know that a label is associated with a
checkbox, for example, and MSIE 4+ lets users
control form elements by clicking on their
labels. See Figure 1 (page 48).

� Accesskey. The accesskey attribute allows us to

associate Alt-x shortcuts with form elements.
FirstSearch associates Alt-s with submit buttons,
for instance, and Alt-c with the clear button.

Although these attributes and tags are not sup-
ported in the 3.x versions of the major browsers
and Netscape 4.x, they do no harm. In early ver-
sions of Netscape 6, label tags produced display
problems, so they were removed using condi-
tional entities.

Levels of Users
We designed FirstSearch for different levels of
users with three search levels: basic, advanced, and
expert. The levels differed in the number and size
of search boxes, the number of indexes (3 for
basic, 10-15 for advanced, and 20-30 for expert),
and the detail and location of context-sensitive
help. These adaptations were designed and imple-
mented using the same methods used for other
dimensions of user variability.

Customization
The FirstSearch administrative module lets libraries
customize FirstSearch by choosing default search
modes, topic areas, library logo, links into library
catalogs, and most options for controlling the
access to for-fee items. We are also exploring
patron customization of the interface by saving
settings across sessions. We implemented patron
settings in a few hours because the user interface
allows setting groups of entities. The same frame-
work is flexible enough for us to explore gender
and age-based customization.

Coordination Issues
The partitioning of the user interface, and the plain
text format of the interface initialization files, let
nondevelopers make changes to the system with-
out involving programmers. For the first time,
nonprogrammers had interactive control over the
parts of the system for which they had responsi-
bility, and it took many user-interface decisions
out of the hands of programmers (which was gen-
erally received positively by all).

Most contributors could not follow detailed
instructions about how to develop platform- and
language-independent screens. A few guidelines
proved to be more effective (such as, “no HTML in
Java code”). For practical purposes, most pro-
grammers found it easier to write untamed code
and partition it when it was ready. As we identi-
fied problems, we enhanced checking scripts to
find problems automatically.

54 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Usability and the Web

Pages file Language files

Style file

GUI template

Lynx template

Print template

Figure 9. HTML dynamic page generation inte-
grates functional page information, language val-
ues, and styles into platform-specific templates
(GUI, Lynx, and Print, for example).Any template
can include function-specific entities from
Pages.ini,Style.ini, or the current language.
These can, in turn, include other entities.This reuse
of entities allows reuse and helps enforce consis-
tency where desired.

Conclusion
We designed the partitioned user interface primar-
ily so that it could be adapted to changing require-
ments. In achieving that goal, we allowed the rapid
exploration and implementation of a variety of
universal usability dimensions: cross-platform,
multilingual, accessible, and, in general, environ-
ment-sensitive versions. With conditional sections
of initialization files, we could develop parameters
to adapt to the presence of JavaScript, the quirky
performance of certain browsers (old and new), and
custom parameters for different screen sizes,
among other considerations. The performance costs
for late binding and dynamic generation of HTML
have been small, and in some ways have improved
performance because generated pages do not
require any file access.

As we have gathered feedback and done more
usability testing, we have made changes to the
system. Returning to the highest priority goal of
adaptability, it was not critical to get the design
right, but it was critical to be able to change what
was wrong. Partitioning the design into indepen-
dent single-source representations made it easy to
know where and how to make global and local
changes. Global changes to reorganize all screens
took minutes or hours of editing a single template
instead of days or longer. Small changes have had
invariably low costs, and larger changes have had
generally proportional costs (although they some-
times have multiplicative benefits when applied to
templates because templates apply to many pages).
New pages could be added independent of other
pages, but follow the same global conventions and
appear immediately in all languages. System-wide
styles could be changed independent of the sys-
tem functionality and terminology and tuned to
fine-grained details of particular browsers, plat-
forms, and so forth. Terminology, including new
language translations, could be added and
changed independent of the rest of the system.

One drawback of the methodology is that it
requires that developers work more formally when
making changes, understanding where and how
changes should be made (perhaps this is a benefit
and not a drawback). But change is not without
cost. Even when it was easy to make changes, we
had to factor in the costs of regression testing
(which checks for differences in the HTML) and of
training (which in most cases is done by individual
users for themselves).

The methodology repeatedly let us adapt to
change, leading us to conclude that it was more
important to be able to change than to “get things

right.” Usability testing, user feedback, new brows-
er releases, new features, and new application lay-
ers would continually require change. What is per-
haps the most striking result of designing a user
interface capable of adapting to change is how it
helped with areas for which we did not anticipate
change. We knew the screen layout would change,
and we knew the terminology would change, but
we did not know we would be using label tags and
title attributes for accessibility, nor that the same
methods to adapt to platforms could be used for
user-customizable versions of the system. The
demands of a few universal access issues required
a design that helped address many.

Acknowledgments
I would like to thank Mike Prasse, the reviewers, and the editors

for their comments. I am eternally grateful to James Fitch for

providing the ability to re-read updated INI files in context

without restarting, and I would like to thank Allan Schreiber

for his inspiration on generalization.

References

1. F.P. Brooks, The Mythical Man-month: Essays on Software

Engineering, Addison-Wesley, Reading, Mass., 1975.

2. D. Hysell and G. Perlman, “Lessons Learned from Interna-

tionalizing a Global Resource,” Proc. 1st Int’l Workshop

Internationalization of Products and Systems (IWIPS99),

G. Prabhu and E. delGaldo, eds., Backhouse Press,

Rochester, N.Y., 1999, pp. 183–192.

3. G. Perlman, “Coordinating Consistency of User Interfaces,

Code, Online Help, and Documentation” Coordinating User

Interfaces for Consistency, J. Nielsen, ed., Academic Press,

San Diego, Calif., 1989, pp. 35–55.

4. G. Perlman, “Information Retrieval Techniques for Hyper-

text in the Semi-Structured Toolkit,” Proc. ACM Hypertext

93, ACM Press, New York, 1993, pp. 260–267.

5. G. Perlman, “The FirstSearch User Interface Architecture:

Universal Access for Any User, in Many Languages, on

Any Platform,” Proc. 1st ACM Conf. Universal Usability,

ACM Press, New York, 2000, pp. 1–8.

6. G. Perlman, “CHI 99 SIG: Universal Web Access: Deliver-

ing Services to Everyone,” SIGCHI Bull., vol. 31, no. 4,

May 1999, pp. 53–54.

Gary Perlman is a consulting research scientist at the OCLC Online

Computer Library Center where he works on user interfaces

for bibliographic and full-text retrieval. His research inter-

ests are in making information technology more useful and

usable for people. He is a member of the IEEE Computer Soci-

ety, ACM, and Human Factors and Ergonomics Society.

Readers can contact the author at perlman@oclc.org.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 55

Achieving Universal Usability

