ACM SIGSOFT, SOFTWARE ENGINEERING NOTES

Yol § Nod4 October 1980 Page 9

*** Two High-Level Skills for Programming: ***
A comment on R. L. Glass’ "The Importance of the Individual"

Glass (ACM SIGSOFT Software Engineering Notes. 5 3, pp. 48-30, July
19801 points out huge individual differences in programmer abilities.

He also bemoans the lack of aptitude tests lo identify good
programmers. | think that the reason for this lack lies in
methodological problems in devising aptitude tests of any kind. Despite
their ubiquity. the so-called intelligence tests and scholastic aptitude
tests are poor predictors of future performance in school and other areas
{except of performance on similiar tests. where the success is
moderate).

More plausible than the empirical approach is the usc of theoretical
models to describe the skills necessary for coding and debugging
programs. [think cognitive psychologists can contribule to the
identification of good programs and the betterment of mediocre
programmers by using models ol thought to explain why certain
attributes are desirable.

I base my opinions on general human information processing limitations
of people in general, and therefore programmers in particular. The
major limitation of human programmers is their limited conscious
memory capacity. We have the ability to keep track of only a few ideas
and their interactions at one time. This implies that programmers
should attack only small tasks that can easily be conceptualized. Since
the tasks we are interested in are not small, they have to be made to
appear small by dividing them into some number of smaller tasks, and
then conquering the smaller tasks. This technique has come (o be
called divide and conquer. However, some soltware engineers have
rightly suggested that the division of any module should not be greater
than about six parts. The reason for this is that if a module is divided
into more. then keeping track of all those parts will also overload
conscious memory. These points indicate that good programmers need
the ability to divide problems intelligently so that the conquering ol the
parts is simplified. [think testing for this trait would prove to be a good
indicator of programming capability.

People are bad at hypothesis testing. which is largely a learned skill.
Applied to program development. notably testing and debugging. good
programmers need skills in proper experimentation. To locate and
correct a bug, we make changes in input or to the program itself and
note changes in output. The need for experimental control in testing
and debugging implies the need for stepwise refinement of programs
(adding exactly one module between tests). This restricts the source of
new bugs to the new module. If more than one module is added for a
test . then the source of the error cannot be determined because
(experimentally speaking) more than one factor has been varied at one
time. (In statistics this is called perfect confounding.)

I have suggested two skills needed for productive programming based
on psychological principles.
. The ability to code large programs requires the ability to
divide (possibly recursively) a program intelligently into
easily conquered parts.

Gary Perlman

2. The ability to test and debug requires (at least implicit)
knowledge of the logic of experimental hypothesis testing.

Neither of these skills comes naturally to most people, but they can be
taught. Deteclion of these skills should be useful lor predicting
programmer productivity.

Deparunent of Psychology
University of California, San Diego
La Jolla. CA 92093

Gary Periman

Response from the Editor:

Programmers seem to have two quaiitatively different types of skills
they use in writing programs. The first type involves logical, linear. and
rational skills, while the sccond involves creative and intuitive skills.
(Note that there is some evidence to suggest that these two skill types
are often associated with the activities of the left hemisphere and the
right hemisphere of the brain, respectively, although that association not
vital to my comment.) 1 once wondered whether one of these skill
lypes was more imporlant in creative programming endeavors. but then
concluded that a balence of these skills is required. Logical/linear skills
are essential to permit the orderly maintenance of a vast collection of
details and their interrelationships. llowever, creative/intuitive skills are
vital to large and complex efforts in which creative use of structure and
decomposilion is required when the problem becomes oo big to be
handled as a single enlity. Someone who is strong only in logical/linear
skills may be an excellent programmer in the small, but may have great
difficulty in coping with large and real sysltems in their entirety.
Someone who is strong only in crealive/intuitive skills is unlikely to
become a good programmer in the first place. especially if there is an
intrinsic dislike of detailed mathematical thinking. However. the really
disciplined imaginative designer/programmer seems (o be someone with
all these skills well developed and well in balance. Our educational
process should consider it a challenge to help each individual to bring
these sometimes opposing skill types into harmony. (If you missed it,
see my somewhat related piece on the psychology of abstraction. SEN 4
1. p. 21 January 1979.) PGN.

Response from Gary Perlman:

Yes. people good at the desigh of large programs are not necessarily
good at writing modules. and vice versa. This predicts a version ol the
Peter Principle that probably occurs in programming: a good coder is
promoled to designer and becomes incompetent. GP.

