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Consider the formula for the arithmetic 
average, 

(1) 

which states that the average of a set with 
n members, XI ,  X 2 ,  X 3 ,  . . . , X,, is the 
sum of all its members divided by n. If we 
assume students can add and divide, then 
the ability of students to learn how to 
compute an average depends largely on 
their ability to decipher the meanings of 
all the symbols in ( 1 ) .  1 believe there are 
some rules that can simplify the task of 
communicating mathematical ideas with 
symbols. For example, to simplify ( I ) ,  
two appropriate rules are the following: 
symbols should be funiiliur. (out with sig- 
ma), and symbols shorrld be mnc~monics 
(in with SUM). Another notational rule is 
the following: a notution should protnotc 
generalization. This suggests the follow- 
ing scheme appropriate for the computer 
age. 

(2) AVERAGE (X)  = SUM (X)/SIZE (X )  

Although (2) could be shorter and is not as 
powerful as general summation notation, 
its operations are defined in a common 
functional notation, and their meaning can 
easily be remembered because of their 
names. 

Introduction to Notation 

A notation is a set of symbols and rules 
for combining symbols to represent math- 
ematical ideas. A notation is often a short- 
hand for expressing mathematical ideas, 
but it can also be instrumental in facilitat- 

i = n  c xi 
i= 1 

n ’  
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ing students’ understanding and use of 
mathematics. A notation should not serve 
merely as an aid to compaction; it should 
convey meaning by itself and, in doing so, 
be an aid to solving problems. From Al- 
fred North Whitehead in A n  Introduction 
t o  Mathematics: 
By the aid of symbolism, we can make transitions in 
reasoning almost mechanically by the eye, which 
otherwise would call upon higher faculties of the 
brain. By relieving the brain of all unnecessary work, 
a good notation sets it free to concentrate on  more 
advanced problems. [ 191 1 ,  chap. 51 

In fact, many advances in mathematics 
have been due to suggestive notations. 
For example, expressing the rule “the 
product of the tilth power o fx  with the nth 
power of x is equal to the ( m  + n)th power 
of x” with abstract symbols 

X m  X n  = X n + n  

led to the discovery that the square root of 
x is equal to the 1/2 power of x, 

X I .  x l 1 2  112 = X 

Previously, no one had thought of using 
nonintegral exponents. 

Notation affects both the learning and 
the creation of new mathematics. Despite 
the apparent importance of notation, there 
has been little research on what makes a 
good notation. In the following sections 1 
propose some rules for denoting things, 
properties of things, and relations be- 
tween things. Satisfying some rules vio- 
lates others, a fact that suggests there are 
no perfect notational schemes, though 
some are better than others. 

A notarion should be concise 
A notation is generally used to express 

ideas with few symbols and in a small 
space, for fast and easy study. Without 
this rule, we could satisfy all other rules 
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by writing out in long wordy Engli\h all 
the ideas we wanted to convey. A prob- 
lem with verbose descriptions is that a 
complicated idea generally requires many 
words to describe. Because we have limit- 
ed short-term memories, we have difficul- 
ty  understanding ideas presented in this 
way. By packing a lot of infoiination into 
a small space, more information is avail- 
able at a glance, facilitating the observa- 
tion of relations between ideas. 

For example, it is difficult to grasp the 
meaning of the following familiar theorem 
when it  is stated in English. 

In  all triangles with a right angle, the 
product of the length of the side oppo- 
site the  right angle with itselfis cyiial to  
the sum of the products of the lengths of 
the other two sides, each ,rith itsey. 

This verbose version of the Pythagore- 
an theorem does not make use of some 
English conventions about naming. Al- 
though there is a cost associated with the 
introduction of any new notation, com- 
monly denoted things should have their 
own names. A triangle with a right angle is 
called a right triangle; the product of any- 
thing with itself is called its square; and 
the side opposite the right angle in a right 
triangle is called the hypotenuse. With 
this bit of notation, the theorem becomes 
the following: 

In  a right triangle, the square of the 
length of the hppotcnirsr is eqiral to the 
sum of the squares of the lengths of the 
other two sides. 

By using some sloppy conventions, we 
can assume that right triangles are implied 
anytime anyone talks about hypotenuse, 
and we can ignore the distinction between 
the length of a side and the side itself. The 
following short form is then obtained. 

The square of the hypotenuse is equal 
t o  the sum o f t h e  squares of the other 
two sides. 

To further compact the theorem, abstract 
symbols can be introduced (e.g., “=” for 
“is equal to”). One might think it is a 

good idea to introduce as many symbols 
as there are concepts, but the wisdom of 
introducing loo many symbols has been 
questioned (Kline 1973). It requires effort 
to learn the meaning of new symbols. If a 
concept is used frequently, then a nota- 
tion specifically for it is appropriate, but 
symbolism just for the sake of using sym- 
bols can be an unnecessary burden‘ on 
memory. 

A notation should be precise. 
By identifying the length of a side with 

its name, the final short form is technical- 
ly  incorrect. 1 do not see this as a lack of 
precision because people understand the 
convention. Precision is achieved when 
people understand the message, not when 
pedantic mathematicians cannot find 
fault. 

When needed, precision can be gained 
at little cost. For example, parentheses 
can often be used to remove ambiguities 
when there are no conventions to follow. 
If we did not have the convention that 
arithmetic expressions are evaluated from 
left to right with some operations having 
precedence over others, we could clarify 
the order of operations of 

a + b X cld 

with parentheses to obtain 

(a  + ( (b  x c) ld ) ) .  

A notation should promote 
generalization. 

Similar ideas should have similar nota- 
tions. How one idea is represented should 
be consistent with how related ideas are 
represented, and it  should provide clues 
about how they are represented. In ana- 
lytic geometry, (x, y )  is used to denote a 
point in the real plane. To denote a point 
in space, the notation (x, y ,  z )  generalizes 
from (x, y )  in two ways. One is that the 
third dimension is added on at the end of 
x, y so the two-dimensional representation 
is embedded in the three-dimensional; and 
the other is that z follows xy in the alpha- 
bet as well as in the notation. 
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In computer programming languages, 
where functions may have many parame- 
ters, an example of bad notational form 
would be to have two related functions 
with the same parameters but where the 
order of the parameters does not agree. A 
matrix inversion program might have two 
parameters, a matrix and its size, 

invert (matrix, size), 

whereas, to compute the determinant an- 
other function might take the same param- 
eters but in the opposite order, 

determinant (size, matrix). 

Either form can be justified, but their 
combination cannot. Knowing the form of 
one function does not help but hinders the 
learning of the other. 

Subscripts, although they add some 
complexity by making the symbols harder 
to learn, do promote generalization as 
well as minimize the total number of sym- 
bols introduced. If a sequence is repre- 
sented by 

x = ( X , ,  x,, x3, . . . , xi, . . . , X A  
we have a way of talking about a se- 
quence, its first, last, and even ith ele- 
ments in a general manner. 

Symbols should be mnemonics. 

Arbitrarily chosen symbols will not 
serve as mnemonics (aids to memory) and 
so will be harder to learn than ones well 
chosen. A symbol should have something 
in common with the object i t  represents. If 
a symbol is an aid for remembering what it 
stands for, it will be easier to learn and 
use. I t  may be an abbreviation of an 
existing name as in representing the num- 
ber of dollars with d ,  or i t  may even look 
like the concept i t  denotes as in the case of 
using )I for parallel. 

Abbreviations help us remember a new 
symbol in terms of an existing symbol for 
an object, a symbol that often has nothing 
to do with that object. Using d for dollars 
is a good choice because dollars begins 
with d ;  however, there is no natural con- 

nection between the word dollurs and the 
concept of dollars. So whether a mnemon- 
ic has anything to do with the concept it 
denotes is not as important as having a 
relation to some existing attribute such as 
its name. The strongest connection occurs 
with symbols for geometric objects where 
symbols look like the things they denote. 
For example, A can be used to represent 
triangle. 

To help students learn notation, we 
should supply a rationale whenever new 
notation is introduced. Otherwise, a sym- 
bol’s mnemonic value may not be per- 
ceived. The rationale might be the truth 
about the matter, such as the historical 
reason for the choice, or it can be a 
simplification of the truth to facilitate in- 
struction. For example, a rationale like 
the following might be given to aid the 
learning of the relational operators gieafc>r 
than and leJs thrin, > and <, respectively. 

Relational operators are put bef Mwn 
their operands becawe they represent 
relations between operands. The small- 
er quantity is put on the smaller side of 
the symbol. 

Whether this is the real reason for the 
choice of symbols is not really important. 
The rationale has given a unified explana- 
tion that serves as an aid to memory, so it  
is all that is needed. 

An example of innovation in choosing 
mnemonic symbol names is in computer 
programs where names rather than single 
symbols are used for functions and varia- 
bles. Earlier, I used the notation 

invert (matrix, size) 

to denote a matrix program. The choice of 
names can be arbitrary, but invert for the 
program, matrix for its matrix argument, 
and size for the size of the matrix are all 
useful mnemonics. These symbolic names 
are not as short as possible but are a great 
aid to understanding the meaning of state- 
ments and will be used with similar suc- 
cess in all mathematics as computer sci- 
ence and mathematics education become 
more integrated. 
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Symbols should be familiar. 
Symbols themselves should be easy to 

remember so they should have already 
been encountered. They should be pro- 
nounceable, writable, and visually dis- 
tinct. If they are not, they may be con- 
fused or  forgotten. Obscure symbols 
should be avoided. If they must be intro- 
duced, their English names, along with 
their pronunciation, should accompany 
them. Otherwise, the use of special sym- 
bols may confuse students, possibly lead- 
ing to what is informally called moth atzxi- 
ety. A common source of frustration is the 
use of the Greek alphabet. These symbols 
are both hard to distinguish and hard to 
pronounce, and learning concepts ex- 
pressed with them becomes a memory test 
rather than a learning experience. 

Symbols should be unique. 
Symbols and concepts should be in one- 

to-one correspondence within a given 
mathematical topic. The same concept 
should not have two representations and 
the same symbol should not be used to 
denote more than one object. But because 
it is desirable that similar concepts be 
similarly denoted and because there are a 
limited number of similar representations, 
it is common for one symbol to have more 
than one meaning. Multiple meanings for 
symbols usually do not present a problem 
of precision if the student knows there can 
be more than one meaning for symbols 
and is able to determine which meanings 
are meant by the contexts in which they 
appear. Skemp (1971) suggests using 
unique meanings of symbols inside a par- 
ticular domain, but the same symbol can 
have different meanings in diferenr do- 
mains if it is clear to the student to which 
domain the teacher is referring. 

A symbol that has many meanings is the 
equal sign. In some cases it  indicates 
identity: 

i f i = O , t h e n  . . . .  
In others it means assignment: 

x = y + z .  

I t  can also be used to define symbols: 

t = elapsed time. 

The meanings in all cases are highly relat- 
ed and promote generalization by their 
similar (id en t ical) repre sent at ions. 

The converse of multiple meanings is 
also common. The appearance of synony- 
mous symbols is usually due to similar 
theoretical developments on several 
fronts. The most commonly encountered 
synonyms are those for multiplication, 

a x b  a . 6  ab a * b ,  

and division, 

U a -+ b u : b  alb - b '  

Learning several different symbols for the 
same objects is usually a waste of time 
and effort. 

Existing not u I iotz should hc I ) i  (1 it I lrr in ed. 

There is n o  hope of replacing long estahlished 
notation- the only hope of establishing a good nota- 
tion is at the outset .  [Richard Skemp 1971, chap.  51 

The adoption of tiotutiotzul c.oni~c~iition.s 
niakes i t  easier for people to communicate 
without prefacing each communication 
with definitions. For  example, we can't 
have someone telling us that + will be 
used for multiplication; the symbol is too 
deeply entrenched in our educational sys- 
tem. The use of conventions also helps us 
avoid synonymous symbols that occur 
when different authors use personal favor- 
ite notations. 

Form at should reflect org ri ti iia lion. 

I have so far concentrated on symbolic 
notation, but graphical devices are also 
useful to convey meaning. Nicely format- 
ted text facilitates understanding because 
its organization can parallel its content. 
Rules for good format include placing one 
idea per line and using indentation and 
columnation to indicate structure. In the 
following example, by having the ith term 
in S under the (i + I)th term of 2S ,  the 
trick of the proof is made transparent. 
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THEOREM. The suni of the ini*c>r..ves of the  
positive po,rpers of 2 is I .  
Proof. Let S = 1/2 + 114 + 1/8 

+ 1/16 + . . * . 
Using subtraction, we have the follow- 

ing: 

2s = I + 1/2 + 1/4 + 1/8 + 1/16 + . - . 
- S = 1/2 + 1/4 + 1/8 + 1/16 + . . . 

S = l  

Concluding Remarks 

When a code is familiar enough, i t  ceases appear- 
ing like a code; one forgets there is a decoding 
mechanism. The message is identified with its mean- 
ing. [Douglas Hofstadter 1979, p. 2671 

We can accept almost any name for a 
concept. For complicated thoughts, care- 
ful choice of form is crucial. Incongruities 
between the structure of expressions and 
their meaning not only may make learning 
more difficult but also may perpetually be 
the cause of errors. 

There is a strong analogy between 
learning the language of mathematics and 
one’s mother tongue. Vocabulary and 
grammar must be learned before meaning- 
ful communication can be achieved. 
When students begin learning an area of 
mathematics, a large proportion of effort 
should be devoted to teaching notation. 
By the time students get to more ad- 
vanced courses in mathematics, the time 
devoted to introducing notation gets 
shorter, but no less crucial. Even the 
simplest of ideas cannot be communicated 
if the teacher and student are not “speak- 
ing” the same language. 

What implications do these rules have 
for education? We should have them clear 
in our minds so that we can make commu- 
nication of mathematical ideas easier for 
our students. Whether i t  would be useful 
for students to learn about general proper- 
ties of notational schemes is an open 
question. Clearly, they must understand 
the notation system being used. and the 
only way this can be done, as with any 
language, is through practice. 
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