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MAKING MATHEMATICAL NOTATION
MORE MEANINGFUL

By GARY PERLMAN
University of California, San Diego
La Jolla, CA 92093

Consider the formula for the arithmetic

average,
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which states that the average of a set with
n members, X;, X5, X3, ..., X,, is the
sum of all its members divided by n. If we
assume students can add and divide, then
the ability of students to learn how to
compute an average depends largely on
their ability to decipher the meanings of
all the symbols in (1). 1 believe there are
some rules that can simplify the task of
communicating mathematical ideas with
symbols. For example, to simplify (1),
two appropriate rules are the following:
symbols should be farmiliar (out with sig-
ma), and symbols shorrld be mnemonics
(in with SUM). Another notational rule is
the following: a notation should promote
generalization. This suggests the follow-
ing scheme appropriate for the computer
age.

(2) AVERAGE (X) = SUM (X)/SIZE (X)

Although (2) could be shorter and is not as
powerful as general summation notation,
its operations are defined in a common
functional notation, and their meaning can
easily be remembered because of their
names.

Introduction to Notation

A notation is a set of symbols and rules
for combining symbols to represent math-
ematical ideas. A notation is often a short-
hand for expressing mathematical ideas,
but it can also be instrumental in facilitat-
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ing students’ understanding and use of
mathematics. A notation should not serve
merely as an aid to compaction; it should
convey meaning by itself and, in doing so,
be an aid to solving problems. From Al-
fred North Whitehead in An Introduction
to Mathematics:

By the aid of symbolism, we can make transitions in
reasoning almost mechanically by the eye, which
otherwise would call upon higher faculties of the
brain. By relieving the brain of all unnecessary work,

a good notation sets it free to concentrate on more
advanced problems. [1911, chap. 5]

In fact, many advances in mathematics
have been due to suggestive notations.
For example, expressing the rule “the
product of the »th power ofx with the »nth
power of x is equal to the (m + n)th power
of x>’ with abstract symbols

xm X" —_ xm+n
led to the discovery that the square root of
x is equal to the 1/2 power of x,

X2 12 = b
Previously, no one had thought of using
nonintegral exponents.

Notation affects both the learning and
the creation of new mathematics. Despite
the apparent importance of notation, there
has been little research on what makes a
good notation. In the following sections 1
propose some rules for denoting things,
properties of things, and relations be-
tween things. Satisfying some rules vio-
lates others, a fact that suggests there are
no perfect notational schemes, though
some are better than others.

A notation should be concise

A notation is generally used to express
ideas with few symbols and in a small
space, for fast and easy study. Without
this rule, we could satisfy all other rules
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by writing out in long wordy FEnglish all
the ideas we wanted to convey. A prob-
lem with verbose descriptions is that a
complicated idea generally requires many
words to describe. Because we have limit-
ed short-term memories, we have difficul-
ty understanding ideas presented in this
way. By packing a lot of information into
a small space, more information is avail-
able at a glance, facilitating the observa-
tion of relations between ideas.

For example, it is difficult to grasp the
meaning of the following familiar theorem
when it is stated in English.

In all triangles with a right angle, the
product of the /ength of the side oppo-
site the right angle with itselfis equal to
the sum of the products of the lengths of
the other two sides, each with iiself.

This verbose version of the Pythagore-
an theorem does not make use of some
English conventions about naming. Al-
though there is a cost associated with the
introduction of any new notation, com-
monly denoted things should have their
own names. A triangle with a right angle is
called a right triangle; the product of any-
thing with itself is called its square; and
the side opposite the right angle in a right
triangle is called the hypotenuse. With
this bit of notation, the theorem becomes
the following:

In « right triangle, the square of the
length of the hypotenuse is equal to the
sum of the squares of the lengths of the
other two sides.

By using some sloppy conventions, we
can assume that right triangles are implied
anytime anyone talks about hypotenuse,
and we can ignore the distinction between
the length of a side and the side itself. The
following short form is then obtained.

The square of the hypotenuse is equal
to the sum of the squares of the other
two sides.

To further compact the theorem, abstract
symbols can be introduced (e.g., ‘**="" for
“is equal to”). One might think it is a

good idea to introduce as many symbols
as there are concepts, but the wisdom of
introducing loo many symbols has been
questioned (Kline 1973). It requires effort
to learn the meaning of new symbols. If a
concept is used frequently, then a nota-
tion specifically for it is appropriate, but
symbolism just for the sake of using sym-
bols can be an unnecessary burden‘on
memory.

A notation should be precise.

By identifying the length of a side with
its name, the final short form is technical-
ly incorrect. 1do not see this as a lack of
precision because people understand the
convention. Precision is achieved when
people understand the message, not when
pedantic mathematicians cannot find
fault.

When needed, precision can be gained
at little cost. For example, parentheses
can often be used to remove ambiguities
when there are no conventions to follow.
If we did not have the convention that
arithmetic expressions are evaluated from
left to right with some opecrations having
precedence over others, we could clarify
the order of operations of

athxcl
with parentheses to obtain
(at ((bx ¢)id)).

A notation should promote
generalization.

Similar ideas should have similar nota-
tions. How one idea is represented should
be consistent with how related ideas are
represented, and it should provide clues
about how they are represented. In ana-
Iytic geometry, (x, y) is used to denote a
point in the real plane. To denote a point
in space, the notation (x, y, z) generalizes
from (x, y) in two ways. One is that the
third dimension is added on at the end of
X,y sothe two-dimensional representation
isembedded in the three-dimensional; and
the other is that z follows xy in the alpha-
bet as well as in the notation.
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In computer programming languages,
where functions may have many parame-
ters, an example of bad notational form
would be to have two related functions
with the same parameters but where the
order of the parameters does not agree. A
matrix inversion program might have two
parameters, a matrix and its size,

invert (matrix, size),

whereas, to compute the determinant an-
other function might take the same param-
eters but in the opposite order,

determinant (size, matrix).

Either form can be justified, but their
combination cannot. Knowing the form of
one function does not help but hinders the
learning of the other.

Subscripts, although they add some
complexity by making the symbols harder
to learn, do promote generalization as
well as minimize the total number of sym-
bols introduced. If a sequence is repre-
sented by

X = (leXZ’XBa . e ,Xiv . e ,Xn)a

we have a way of talking about a se-
quence, its first, last, and even ith ele-
ments in a general manner.

Symbols should be mnemonics.

Arbitrarily chosen symbols will not
serve as mnemonics (aids to memory) and
so will be harder to learn than ones well
chosen. A symbol should have something
in common with the object it represents. If
a symbol is an aid for remembering what it
stands for, it will be easier to learn and
use. It may be an abbreviation of an
existing name as in representing the num-
ber of dollars with d, or it may even look
like the concept it denotes as in the case of
using || for parallel.

Abbreviations help us remember a new
symbol in terms of an existing symbol for
an object, a symbol that often has nothing
to do with that object. Using d for dollars
is a good choice because dollars begins
with d; however, there is no natural con-
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nection between the word dollars and the
concept of dollars. So whether a mnemon-
ic has anything to do with the concept it
denotes is not as important as having a
relation to some existing attribute such as
its name. The strongest connection occurs
with symbols for geometric objects where
symbols look like the things they denote.
For example, A can be used to represent
triangle.

To help students learn notation, we
should supply a rationale whenever new
notation is introduced. Otherwise, a sym-
bol’s mnemonic value may not be per-
ceived. The rationale might be the truth
about the matter, such as the historical
reason for the choice, or it can be a
simplification of the truth to facilitate in-
struction. For example, a rationale like
the following might be given to aid the
learning of the relational operators greater
thanand less than, > and <, respectively.

Relational operators are put betfween
their operands because they represent
relations between operands. The small-
er quantity is put on the smaller side of
the symbol.

Whether this is the real reason for the
choice of symbols is not really important.
The rationale has given a unified explana-
tion that serves as an aid to memory, so it
is all that is needed.

An example of innovation in choosing
mnemonic symbol names is in computer
programs where names rather than single
symbols are used for functions and varia-
bles. Earlier, | used the notation

invert (matrix, size)

to denote a matrix program. The choice of
names can be arbitrary, but invers for the
program, matrix for its matrix argument,
and size for the size of the matrix are all
useful mnemonics. These symbolic names
are not as short as possible but are a great
aid to understanding the meaning of state-
ments and will be used with similar suc-
cess in all mathematics as computer sci-
ence and mathematics education become
more integrated.



Symbols should be familiar.

Symbols themselves should be easy to
remember so they should have already
been encountered. They should be pro-
nounceable, writable, and visually dis-
tinct. If they are not, they may be con-
fused or forgotten. Obscure symbols
should be avoided. If they must be intro-
duced, their English names, along with
their pronunciation, should accompany
them. Otherwise, the use of special sym-
bols may confuse students, possibly lead-
ing to what is informally called math anxi-
ety. A common source of frustration is the
use of the Greek alphabet. These symbols
are both hard to distinguish and hard to
pronounce, and learning concepts ex-
pressed with them becomes a memory test
rather than a learning experience.

Symbols should be unique.

Symbols and concepts should be in one-
to-one correspondence within a given
mathematical topic. The same concept
should not have two representations and
the same symbol should not be used to
denote more than one object. But because
it is desirable that similar concepts be
similarly denoted and because there are a
limited number of similar representations,
it is common for one symbol to have more
than one meaning. Multiple meanings for
symbols usually do not present a problem
of precision if the student knows there can
be more than one meaning for symbols
and is able to determine which meanings
are meant by the contexts in which they
appear. Skemp (1971) suggests using
unique meanings of symbols inside a par-
ticular domain, but the same symbol can
have different meanings in different do-
mains if it is clear to the student to which
domain the teacher is referring.

A symbol that has many meanings is the
equal sign. In some cases it indicates
identity:

ifi =20, then ....
In others it means assignment:

x=y+z

It can also be used to define symbols:
t = elapsed time.

The meanings in all cases are highly relat-
ed and promote generalization by their
similar (identical) representations.

The converse of multiple meanings is
also common. The appearance of synony-
mous symbols is usually due to similar
theoretical developments on several
fronts. The most commonly encountered
synonyms are those for multiplication,

axXb a-b ab a=xb,
and division,
a+b a:b alb g.

Learning several different symbols for the
same objects is usually a waste of time
and effort.

Existing notalion should be maitirained.

There is no hope of replacing long established
notation — theonly hope of establishing a good nota-
tion is at the outset. [Richard Skemp 1971, chap. 5]

The adoption of norarional conventions
niakes it easier for people to communicate
without prefacing each communication
with definitions. For example, we can't
have someone telling us that + will be
used for multiplication; the symbol is too
deeply entrenched in our educational sys-
tem. The use of conventions also helps us
avoid synonymous symbols that occur
when different authors use personal favor-
ite notations.

Format should reflect orgatiization.

| have so far concentrated on symbolic
notation, but graphical devices are also
useful to convey meaning. Nicely format-
ted text facilitates understanding because
its organization can parallel its content.
Rules for good format include placing one
idea per line and using indentation and
columnation to indicate structure. In the
following example, by having the ith term
in S under the (i T I)th term of 25, the
trick of the proof is made transparent.
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THEOREM. The sum of the inverses of the
positive powers of 2 5 1.
Proof. Let S =1/2 + 1/4 + 1/8
+ 116+ ..

Using subtraction, we have the follow-
ing:

2s=1ti2tuat+ts+ 116t .-
- S=12tys+18+ 116+ ...

S =1

Concluding Remarks

When a code is familiar enough, it ceases appear-
ing like a code; one forgets there is a decoding
mechanism. The message is identified with its mean-
ing. [Douglas Hofstadter 1979, p. 267]

We can accept almost any name for a
concept. For complicated thoughts, care-
ful choice of form is crucial. Incongruities
between the structure of expressions and
their meaning not only may make learning
more difficult but also may perpetually be
the cause of errors.

There is a strong analogy between
learning the language of mathematics and
one’s mother tongue. Vocabulary and
grammar must be learned before meaning-
ful communication can be achieved.
When students begin learning an area of
mathematics, a large proportion of effort
should be devoted to teaching notation.
By the time students get to more ad-
vanced courses in mathematics, the time
devoted to introducing notation gets
shorter, but no less crucial. Even the
simplest of ideas cannot be communicated
if the teacher and student are not “speak-
ing” the same language.

What implications do these rules have
for education? We should have them clear
in our minds so that we can make commu-
nication of mathematical ideas easier for
our students. Whether it would be useful
for students to learn about general proper-
ties of notational schemes is an open
question. Clearly, they must understand
the notation system being used. and the
only way this can be done, as with any
language, is through practice.
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