
Programming

Quick Reference Guide

Johan Vromans
Squirrel Consultancy

Perl
5 004

Contents

1. Command line options: : : : : : : : : : : : : : : : : : 3

2. Syntax : 4

3. Variables: 4

4. Literals: 5

5. Operators and precedence: : : : : : : : : : : : : : : : 6

6. Statements: 7

7. Subroutines, packages and modules: : : : : : : : : : : 7

8. Pragmatic modules: 9

9. Object oriented programming: : : : : : : : : : : : : : 10

10. Arithmetic functions: : : : : : : : : : : : : : : : : : : 10

11. Conversion functions: : : : : : : : : : : : : : : : : : : 11

12. Structure conversion: : : : : : : : : : : : : : : : : : : 11

13. String functions : 12

14. Array and hash functions: : : : : : : : : : : : : : : : : 12

15. Regular expressions: : : : : : : : : : : : : : : : : : : 14

16. Search and replace functions: : : : : : : : : : : : : : : 15

17. File test operators: 16

18. File operations: 16

19. Input / Output : 17

20. Formats : 19

21. Directory reading routines: : : : : : : : : : : : : : : : 19

22. System interaction: 19

23. Networking : 21

24. SystemV IPC: 21

25. Miscellaneous: 22

26. Information from system files: : : : : : : : : : : : : : 23

27. Special variables: 24

28. Special arrays: 25

29. Standard modules: 26

30. Environment variables: : : : : : : : : : : : : : : : : : 30

31. The perl debugger: 30

Conventions

fixed denotes text that you enter literally.

THIS means variable text, i.e. things you must fill in.

THISy means thatTHIS will default to$_ if omitted.

word is a keyword, i.e. a word with a special meaning.

RET denotes pressing a keyboard key.

[. . .] denotes an optional part.

2

1. Command line options

-a turns on autosplit mode when used with-n or -p . Splits to@F.

-c checks syntax but does not execute. It does runBEGIN andENDblocks.

-d [: DEBUGGER]
runs the script under the debugger. Use ‘-de 0 ’ to start the debugger
without a script.

-D NUMBER
sets debugging flags.

-e COMMANDLINE
may be used to enter a single line of script. Multiple-e commands may
be given to build up a multi-line script.

-F REGEXP
specifies a regular expression to split on if-a is in effect.

-h prints the Perl usage summary. Does not execute.

-i EXT
files processed by the< > construct are to be edited in-place.

-I DIR with -P : tells the C preprocessor where to look for include files. The
directory is prepended to@INC.

-l [OCTNUM]
enables automatic line ending processing, e.g.-l013 .

-m MODULE
imports theMODULE before executing the script.MODULE may be
followed by a ‘=’ and a comma-separated list of items.

-M MODULE
Same as-m, but with more trickery.

-n assumes an input loop around the script. Lines are not printed.

-p assumes an input loop around the script. Lines are printed.

-P runs the C preprocessor on the script before compilation by Perl.

-s interprets ‘-xxx ’ on the command line as a switch and sets the
corresponding variable$xxx in the script.

-S uses thePATHenvironment variable to search for the script.

-T turns ontaint checking.

-u dumps core after compiling the script. To be used with theundump
program (where available).

-U allows Perl to perform unsafe operations.

-v prints the version and patchlevel of your Perl executable.

-V [: VAR]
prints Perl configuration information.

-w prints warnings about possible spelling errors and other error-prone
constructs in the script.

-x [DIR]
extracts Perl program from the input stream. IfDIR is specified, switches
to this directory before running the program.

-0 [VAL]
(that’s the number zero) designates an initial value for the record
separator$/ . See also-l .

Command line options may be specified on the ‘#! ’ line of the perl script, except
for -M, -m and-T .

3

2. Syntax

Perl is a free-format programming language. This means that in general it does not
matter how the Perl program is written with regard to indentation and lines.

An exception to this rule is when the Perl compiler encounters a ‘sharp’ symbol
(#) in the input: it then discards this symbol and everything it follows up to the end
of the current input line. This can be used to put comments in Perl programs. Real
programmers put lots of useful comments in their programs.

There are places where whitespace does matter: withinliteral texts, patterns and
formats.

If the Perl compiler encounters the special token_ _END_ _ it discards this symbol
and stops reading input. Anything following this token is ignored by the Perl
compiler, but can be read by the program when it is run.

3. Variables

$var a simple scalar variable.

$var[28] 29th element of array@var.

$p = \@var now$p is a reference to array@var.

$$p[28] 29th element of array referenced by$p. Also: $p->[28] .

$var[-1] last element of array@var.

$var[$i][$j] $j -th element of$i -th element of array@var.

$var{’Feb’} a value from ‘hash’ (associative array)%var .

$p = \%var now$p is a reference to hash%var .

$$p{’Feb’} a value from hash referenced by$p. Also: $p->{’Feb’} .

$#var last index of array@var.

@var the entire array;
in a scalar context, the number of elements in the array.

@var[3,4,5] a slice of array@var.

@var{’a’,’b’} a slice of%var ; same as($var{’a’},$var{’b’}) .

%var the entire hash;
in a scalar context,true if the hash has elements.

$var{’a’,1,...} emulates a multi-dimensional array.

(’a’..’z’)[4,7,9] a slice of an array literal.

PKG:: VAR a variable from a package, e.g.$pkg::var , @pkg::ary .

\ THINGIE reference to a thingie, e.g.\$var , \%hash .

* NAME refers to all thingies represented byNAME.
‘*n1 = *n2 ’ makesn1 an alias forn2.
‘*n1 = \$n2 ’ makes$n1 an alias for$n2 .

You can always use a{ BLOCK } returning the right type of reference instead of
the variable identifier, e.g.${ . . .} , &{ . . .} . $$p is just a shorthand for${$p} .

4

4. Literals

Numeric:123 1_234 123.4 5E-10 0xff (hex) 0377 (octal).

String:’abc’ literal string, no variable interpolation nor escape characters, except
\’ and\\ . Also: q/abc/ . Almost any pair of delimiters can be used
instead of/ . . ./ .

"abc" Variables are interpolated and escape sequences are processed.
Also: qq/abc/ .
Escape sequences:\t (Tab),\n (Newline),\r (Return),\f
(Formfeed),\b (Backspace),\a (Alarm), \e (Escape),\033 (octal),
\x1b (hex),\c[(control).
\l and\u lowcase/upcase the following character;
\L and\U lowcase/upcase until a\E is encountered.
\Q quote regexp characters until a\E is encountered.

‘ COMMAND‘ evaluates to the output of theCOMMAND.
Also: qx/ COMMAND/ .

Boolean: Perl has no boolean data type. Anything that evaluates to the null string,
the number zero or the string"0" is consideredfalse, everything else is
true (including strings like"00" !).

Array: (1,2,3) a three member array.() is an empty array.
(1..4) is the same as(1,2,3,4) . Likewise(’abc’..’ade’) .
qw/foo bar . . ./ is the same as(’foo’,’bar’, . . .) .

Array reference:[1,2,3] .

Hash (associative array):(KEY1, VAL1, KEY2, VAL2, . . .) .
Also: (KEY1 => VAL1, KEY2 => VAL2, . . .) .

Hash reference:{ KEY1, VAL1, KEY2, VAL2, . . .} .

Code reference:sub { STATEMENTS }

Filehandles:STDIN, STDOUT, STDERR, ARGV, DATA.
User-specified:HANDLE, $VAR.

Globs:<PATTERN> evaluates to all filenames according to the pattern.
Use ‘<${ VAR}> ’ or ‘ glob $VAR’ to glob from a variable.

Here-Is:<<IDENTIFIER Shell-style ‘here document’.

Special tokens:
_ _FILE_ _ : filename;_ _PACKAGE_ _: package;_ _LINE_ _ : line
number.
_ _END_ _: end of program; remaining lines can be read using filehandle
<DATA>.

5

5. Operators and precedence

Perl operators have the following associativity and precedence, listed from highest
precedence to lowest.

Assoc Operators Description
left terms and list operators See below.
left -> Infix dereference operator.

++ Auto-increment (magical on strings).
-- Auto-decrement.

right ** Exponentiation.
right \ Reference to an object (unary).
right ! ˜ Unary negation, bitwise complement.
right + - Unary plus, minus.
left =˜ Binds a scalar expression to a pattern match.
left !˜ Same, but negates the result.
left * / % x Multiplication, division, modulo, repetition.
left + - . Addition, subtraction, concatenation.
left >> << Bitwise shift right, bitwise shift left.

named unary operators E.g.sin , chdir , -f , -M.
< > <= >= Numerical relational operators.
lt gt le ge String relational operators.
== != <=> Numerical equal, not equal, compare.
eq ne cmp Stringwise equal, not equal, compare.

Compare operators return -1 (less), 0 (equal)
or 1 (greater).

left & Bitwise AND.
left | ˆ Bitwise OR, exclusive OR.
left && Logical AND.
left || Logical OR.

.. In scalar context, range operator.
In array context, enumeration.

right ?: Conditional (if ? then: else) operator.
right = += -= *= etc. Assignment operators.
left , Comma operator, also list element separator.
left => Same, enforces the left operand to be a string.

list operators (rightward)See below.
right not Low precedence logical NOT.
left and Low precedence logical AND.
left or xor Low precedence logical OR, exclusive OR.

Parentheses can be used to group an expression into a term.

A ‘list’ is a list of expressions, variables or lists, separated by commas. An array
variable or an array slice may always be used instead of a list.

All Perl functions can be used as list operators, in which case they have very high
or very low precedence, depending on whether you look at the left side of the
operator or at the right side of the operator.
Parentheses can be added around the parameter lists to avoid precedence problems.

The logical operators do not evaluate the right operand if the result is already
known after evaluation of the left operand.

6

6. Statements

Every statement is an expression, optionally followed by a modifier, and
terminated with a semicolon. The semicolon may be omitted if the statement is the
final one in aBLOCK.

Execution of expressions can depend on other expressions using one of the
modifiersif , unless , while or until , e.g.:

EXPR1 if EXPR2 ;
EXPR1 until EXPR2 ;

The logical operators|| , &&, or ?: also allow conditional execution, e.g.:

EXPR1 || EXPR2 ;
EXPR1 ? EXPR2 : EXPR3 ;

Statements can be combined to form aBLOCK when enclosed in{} . BLOCKs may
be used to control flow:

if (EXPR) BLOCK [[elsif (EXPR) BLOCK ...] else BLOCK]
unless (EXPR) BLOCK [else BLOCK]
[LABEL:] while (EXPR) BLOCK [continue BLOCK]
[LABEL:] until (EXPR) BLOCK [continue BLOCK]
[LABEL:] for ([EXPR] ; [EXPR] ; [EXPR]) BLOCK
[LABEL:] foreach VARy(LIST) BLOCK [continue BLOCK]
[LABEL:] BLOCK [continue BLOCK]

Program flow can be controlled with:

goto LABEL
Finds the statement labeled withLABEL and resumes execution there.
LABEL may be an expression that evaluates to the name of a label.

last [LABEL]
Immediately exits the loop in question. Skips continue block.

next [LABEL]
Starts the next iteration of the loop.

redo [LABEL]
Restarts the loop block without evaluating the conditional again.

Special forms are:

do BLOCK while EXPR ;
do BLOCK until EXPR ;

which are guaranteed to performBLOCK once before testingEXPR, and

do BLOCK

which effectively turnsBLOCK into an expression.

7. Subroutines, packages and modules

SUBROUTINE [LIST]
Executes aSUBROUTINE declared by a precedingsub declaration, and
returns the value of the last expression evaluated inSUBROUTINE .
SUBROUTINE can be an expression yielding a reference to code. In this
case you can use&${ EXPR}([LIST]) or ${ EXPR}->([LIST]) .

&SUBROUTINE ([LIST])
Executes aSUBROUTINE not neccesarily declared before being used.

bless REF [, CLASSNAME]
Turns the objectREF into an object inCLASSNAME. Returns the reference.

7

caller [EXPR]
Returns an array ($package,$file,$line,...) for a specific subroutine call.
‘caller ’ returns this info for the current subroutine, ‘caller(1) ’ for
the caller of this subroutine etc.. Returnsfalse if no caller.

do SUBROUTINE LIST
Deprecated form of&SUBROUTINE .

goto &SUBROUTINE
Substitutes a call toSUBROUTINE for the current subroutine.

import MODULE [VERSION] [LIST]
Imports the named items fromMODULE. Checks the module for the
requiredVERSION.

no MODULE [LIST]
Cancels imported semantics. Seeuse .

package NAME
Designates the remainder of the current block as a package.

prototype NAME
Returns the prototype for this function.

require EXPRy

If EXPR is numeric, requires Perl to be at least that version. Otherwise
EXPR must be the name of a file that is included from the Perl library. Does
not include more than once, and yields a fatal error if the file does not
evaluate to atrue value.
If EXPR is a bare word, assumes extension ‘.pm ’ for the name of the file.
This form of loading of modules does not risk altering your namespace.

return EXPR
Returns from a subroutine with the value specified.

sub NAME [(PROTO)] { EXPR ; . . .}
DesignatesNAME as a subroutine. Parameters are passed by reference as
array@_. Returns the value of the last expression evaluated.
PROTO can be used to define the required parameters.
Without aBLOCK it is a forward declaration, without theNAME it is an
anonymous subroutine. Functions that have an empty prototype and do
nothing but return a fixed value are inlined.

[sub] BEGIN { EXPR ; . . .}
Defines a setupBLOCK to be called before execution.

[sub] END { EXPR ; . . .}
Defines a cleanupBLOCK to be called upon termination.

tie VAR, CLASSNAME, [LIST]
Ties a variable to a package class that will handle it. Can be used to bind a
dbm or ndbm file to a hash.

tied VAR
Returns a reference to the object underlyingVAR, or the undefined value if
VAR is not tied to a package class.

untie VAR
Breaks the binding between the variable and the package class.

use VERSION
Requires perl version.

use MODULE [VERSION] [LIST]
Imports semantics from the named module into the current package.

8

Standard methods

TheUNIVERSAL package contains the following methods that are inherited by all
other classes:

isa CLASS
Returnstrue if its object is blessed into a subclass ofCLASS.

can METHOD
Returns a reference to the method if its object has it,undef otherwise.

VERSION [NEED]
Returns the version of the class. Checks the version ifNEED is supplied.

8. Pragmatic modules

Pragmatic modules affect the compilation of your program. Pragmatic modules can
be activated (imported) withuse , and deactivated withno . These are locally
scoped.

autouse MODULE => SUBS
Defersrequire until one of the subs is called.

blib [DIR]
Used for testing of uninstalled packages.

constant NAME = VALUE
DefinesNAME to have a constant (compile-time) value.

diagnostics
Force verbose warning diagnostics.

integer
Compute arithmetic in integer instead of double precision.

less Request less of something from the compiler.

lib Manipulate@INCat compile time.

locale Enable POSIX locales.

ops Restrict unsafe operations when compiling.

overload
Package for overloading Perl operators.
Example:use overload "+" => \&my_add;

sigtrap
Enable simple signal handling.
Example:use sigtrap qw(SEGV TRAP);

strict Restrict unsafe constructs.
use strict "refs" restricts the use of symbolic references.
use strict "vars" requires all variables to be either local or fully
qualified.
use strict "subs" restricts the use of bareword identifiers that are
not subroutines.

subs Predeclare subroutine names, allowing you to use them without
parentheses even before they are declared.
Example:use subs qw(ding dong);

vars Predeclare variable names, allowing you to use them under “use strict”.
Example:use vars qw($foo @bar);

vmsish
Emulate some VMS behaviour.

9

9. Object oriented programming

Perl rules of object oriented programming:

� An object is simply a reference that happens to know which class it belongs to.
Objects are blessed, references are not.

� A class is simply a package that happens to provide methods to deal with object
references.
If a package fails to provide a method, the base classes as listed in@ISAare
searched.

� A method is simply a subroutine that expects an object reference (or a package
name, for static methods) as the first argument.
Methods can be applied with:

METHOD OBJREF PARAMETERS or
OBJREF-> METHOD PARAMETERS

10. Arithmetic functions

abs EXPRy

Returns the absolute value of its operand.

atan2 Y, X
Returns the arctangent ofY/X in the range -� to �.

cos EXPRy

Returns the cosine ofEXPR (expressed in radians).

exp EXPRy

Returnse to the power ofEXPR.

int EXPRy

Returns the integer portion ofEXPR.

log EXPRy

Returns natural logarithm (basee) of EXPR.

rand [EXPR]
Returns a random fractional number between 0 and the value ofEXPR. If
EXPR is omitted, returns a value between 0 and 1.

sin EXPRy

Returns the sine ofEXPR (expressed in radians).

sqrt EXPRy

Returns the square root ofEXPR.

srand [EXPR]
Sets the random number seed for therand operator.

time Returns the number of seconds since January 1, 1970. Suitable for feeding to
gmtime andlocaltime .

10

11. Conversion functions

chr EXPRy

Returns the character represented by the decimal valueEXPR.

gmtime EXPRy

Converts a time as returned by thetime function to a 9-element array
(0:$sec, 1:$min, 2:$hour, 3:$mday, 4:$mon, 5:$year, 6:$wday, 7:$yday,
8:$isdst) with the time localized for the standard Greenwich time zone.
$mon has the range 0..11 and$wday has the range 0..6.

hex EXPRy

Returns the decimal value ofEXPR interpreted as an hex string.

localtime EXPRy

Converts a time as returned by thetime function toctime(3) string. In array
context, returns a 9-element array (seegmtime) with the time localized for
the local time zone.

oct EXPRy

Returns the decimal value ofEXPR interpreted as an octal string. IfEXPR
starts off with0x , interprets it as a hex string instead.

ord EXPRy

Returns the ASCII value of the first character ofEXPR.

vec EXPR, OFFSET, BITS
Treats stringEXPR as a vector of unsigned integers ofBITS bits each, and
yields the decimal value of the element atOFFSET. BITS must be a power
of 2 between 1 and 32. May be assigned to.

12. Structure conversion

pack TEMPLATE, LIST
Packs the values into a binary structure usingTEMPLATE.

unpack TEMPLATE, EXPR
Unpacks the structureEXPR into an array, usingTEMPLATE.

TEMPLATE is a sequence of characters as follows:

a / A ASCII string, null / space padded
b / B Bit string in ascending / descending order
c / C Native / unsigned char value
f / d Single / double float in native format
h / H Hex string, low / high nybble first.
i / I Signed / unsigned integer value
l / L Signed / unsigned long value
n / N Short / long in network (big endian) byte order
s / S Signed / unsigned short value
u / p Uuencoded string / pointer to a string
P A pointer to a structure (fixed-length string)
v / V Short / long in VAX (little endian) byte order
w / x BER compressed integer / null byte
X / @ Backup a byte / null fill until position

Each character may be followed by a decimal number which will be used as a
repeat count, ‘* ’ specifies all remaining arguments.
If the format is preceded with%N, unpack returns anN-bit checksum instead.
Spaces may be included in the template for readability purposes.

11

13. String functions

chomp LISTy
Removes line endings from all elements of the list; returns the (total)
number of characters removed.

chop LISTy
Chops off the last character on all elements of the list; returns the last
chopped character.

crypt PLAINTEXT, SALT
Encrypts a string.

eval EXPRy

EXPR is parsed and executed as if it were a Perl program. The value
returned is the value of the last expression evaluated. If there is a syntax
error or runtime error,undefis returned byeval , and$@is set to the error
message. See alsoeval in section ‘Miscellaneous’.

index STR, SUBSTR [, OFFSET]
Returns the position ofSUBSTR in STR at or afterOFFSET. If the substring
is not found, returns-1 (but see$[in section ‘Special variables’).

length EXPRy

Returns the length in characters ofEXPR.

lc EXPRy

Returns a lower case version ofEXPR.

lcfirst EXPRy

ReturnsEXPR with the first character in lower case.

quotemeta EXPRy

ReturnsEXPR with all regexp meta-characters quoted.

rindex STR, SUBSTR [, OFFSET]
Returns the position of the lastSUBSTR in STR at or beforeOFFSET.

substr EXPR, OFFSET [, LEN]
Extracts a substring out ofEXPR and returns it. IfOFFSET is negative,
counts from the end of the string. IfLEN is negative, leaves that many
characters off the end of the string. May be assigned to.

uc EXPRy

Returns an upper case version ofEXPR.

ucfirst EXPRy

ReturnsEXPR with the first character in upper case.

14. Array and hash functions

delete $HASH{ KEY}
Deletes the specified value from the specified hash. Returns the deleted
value (unlessHASH is tied to a package that does not support this).

each %HASH
Returns a 2-element array consisting of the key and value for the next value
of the hash. After all values of the hash have been returned, an empty list is
returned. The next call toeach after that will start iterating again.

exists EXPRy

Checks whether the specified hash key exists in its hash array.

12

grep EXPR, LIST
grep BLOCK LIST

EvaluatesEXPR or BLOCK for each element of theLIST, locally setting$_
to refer to the element. Modifying$_ will modify the corresponding
element fromLIST. Returns the array of elements fromLIST for which
EXPR returnedtrue.

join EXPR, LIST
Joins the separate strings ofLIST into a single string with fields separated by
the value ofEXPR, and returns the string.

keys %HASH
Returns an array of all the keys of the named hash.

map EXPR, LIST
map BLOCK LIST

EvaluatesEXPR or BLOCK for each element of theLIST, locally setting$_
to refer to the element. Modifying$_ will modify the corresponding
element fromLIST. Returns the list of results.

pop [@ARRAY]
Pops off and returns the last value of the array. If@ARRAY is omitted, pops
@ARGVin main and@_in subroutines.

push @ARRAY, LIST
Pushes the values of the list onto the end of the array.

reverse LIST
In array context: returns theLIST in reverse order.
In scalar context: returns the first element ofLIST with bytes reversed.

scalar @ARRAY
Returns the number of elements in the array.

scalar %HASH
Returns atrue value if the hash has elements defined.

shift [@ARRAY]
Shifts the first value of the array off and returns it, shortening the array by 1
and moving everything down. If@ARRAY is omitted, shifts@ARGVin main
and@_in subroutines.

sort [SUBROUTINE] LIST
Sorts theLIST and returns the sorted array value. IfSUBROUTINE is
specified, gives the name of a subroutine that returns less than zero, zero, or
greater than zero, depending on how the elements of the array, available to
the routine as package global variables$a and$b, are to be ordered.
SUBROUTINE may be the name of a user-defined routine, or aBLOCK.

splice @ARRAY, OFFSET [, LENGTH [, LIST]]
Removes the elements of@ARRAY designated byOFFSET andLENGTH,
and replaces them withLIST (if specified). Returns the elements removed.

split [PATTERN [, EXPRy [, LIMIT]]]
Splits a string into an array of strings, and returns it. IfLIMIT is specified,
splits into at most that number of fields. IfPATTERN is omitted, splits on
whitespace (after skipping any leading whitespace). If not in array context:
returns number of fields and splits to@_.

unshift @ARRAY, LIST
Prepends list to the front of the array, and returns the number of elements in
the new array.

values %HASH
Returns a normal array consisting of all the values of the named hash.

13

15. Regular expressions

Each character matches itself, unless it is one of the special characters
+?.*ˆ$()[]{}|\ . The special meaning of these characters can be escaped
using a ‘\ ’.

. matches an arbitrary character, but not a newline unless the modifier/s is
used.

(. . .) groups a series of pattern elements to a single element.

ˆ matches the beginning of the target. In multi-line mode (seem// m) also
matches after every newline character.

$ matches the end of the line. In multi-line mode also matches before every
newline character.

[. . .] denotes a class of characters to match.[ˆ . . .] negates the class.

(. . .| . . .| . . .) matches one of the alternatives.

(? # TEXT) Comment.

(?: REGEXP) Like (REGEXP) but does not make back-references.

(?= REGEXP) Zero width positive look-ahead assertion.

(?! REGEXP) Zero width negative look-ahead assertion.

(? MODIFIER) Embedded pattern-match modifier.MODIFIER can be one or
more ofi, m, s or x.

Quantified subpatterns match as many times as possible. When followed with a ‘?’
they match the minimum number of times. These are the quantifiers:

+ matches the preceding pattern element one or more times.

? matches zero or one times.

* matches zero or more times.

{ N, M} denotes the minimumN and maximumM match count.{ N} means
exactlyN times;{ N,} means at leastN times.

A ‘ \ ’ escapes any special meaning of the following character if non-alphanumeric,
but it turns most alphanumeric characters into something special:

\w matches alphanumeric, including ‘_’, \W matches non-alphanumeric.

\s matches whitespace,\S matches non-whitespace.

\d matches numeric,\D matches non-numeric.

\A matches the beginning of the string,\Z matches the end.

\b matches word boundaries,\B matches non-boundaries.

\G matches where the previousm// g search left off.

\n , \r , \f , \t , etc. have their usual meaning.

\w , \s and\d may be used within character classes,\b denotes a backspace in
this context.

Back-references:

\1 . . .\9 refer to matched sub-expressions, grouped with() , inside the match.

\10 and up can also be used if the pattern matches that many sub-expressions.

See also$1. . .$9, $+, $&, $‘ and$’ in section ‘Special variables’.

With modifierx, whitespace and comments can be used in the patterns for
readability purposes.

14

16. Search and replace functions

[EXPR =˜] [m] / PATTERN/ [c g i m o s x]
SearchesEXPR (default:$_) for a pattern. If you prepend anm you can use
almost any pair of delimiters instead of the slashes. If used in array context,
an array is returned consisting of the sub-expressions matched by the
parentheses in pattern, i.e.($1,$2,$3, . . .) .
Optional modifiers:c continues the previous match (use withg); g matches
as many times as possible;i searches in a case-insensitive manner;o
interpolates variables only once.
mlet ‘ˆ ’ and ‘$’ match even at embedded newline characters;s let ‘. ’
match even at embedded newline characters;x allows for regular expression
extensions.
If PATTERN is empty, the most recent pattern from a previous successful
match or replacement is used.
With g the match can be used as an iterator in scalar context. The iterator is
reset upon failure, unlessc is also supplied.

?PATTERN?
This is just like the/ PATTERN/ search, except that it matches only once
between calls to thereset operator.

[$VAR =˜] s/ PATTERN/ REPLACEMENT/ [e g i m o s x]
Searches a string for a pattern, and if found, replaces that pattern with the
replacement text. It returns the number of substitutions made, if any,
otherwise it returnsfalse.
Optional modifiers:g replaces all occurrences of the pattern;e evaluates the
replacement string as a Perl expression; for the other modifiers, see
/ PATTERN/ matching. Almost any delimiter may replace the slashes; if
single quotes are used, no interpolation is done on the strings between the
delimiters, otherwise the strings are interpolated as if inside double quotes.
If bracketing delimiters are used,PATTERN andREPLACEMENT may have
their own delimiters, e.g.s(foo)[bar] .
If PATTERN is empty, the most recent pattern from a previous successful
match or replacement is used.

[$VAR =˜] tr / SEARCHLIST/ REPLACEMENTLIST/ [c d s]
Translates all occurrences of the characters found in the search list into the
corresponding character in the replacement list. It returns the number of
characters replaced.y may be used instead oftr .
Optional modifiers:c complements theSEARCHLIST; d deletes all
characters found inSEARCHLIST that do not have a corresponding
character inREPLACEMENTLIST; s squeezes all sequences of characters
that are translated into the same target character into one occurrence of this
character.

pos [SCALARy]
Returns the position where the lastm// g search left off forSCALAR. May
be assigned to.

study [$VARy]
Studies the scalar variable$VAR in anticipation of performing many pattern
matches on its contents before the variable is next modified.

15

17. File test operators

These unary operators take one argument, either a filename or a filehandle, and test
the associated file to see if something is true about it. If the argument is omitted,
they test$_ (except for-t, which testsSTDIN). If the special argument_
(underscore) is passed, they use the info of the preceding test orstat call.

-r -w -x File is readable/writable/executable by effective uid/gid.

-R -W -X File is readable/writable/executable by real uid/gid.

-o -O File is owned by effective/real uid.

-e -z File exists / has zero size.

-s File exists and has non-zero size. Returns the size.

-f -d File is a plain file, a directory.

-l -S -p File is a symbolic link, a socket, a named pipe (FIFO).

-b -c File is a block/character special file.

-u -g -k File has setuid/setgid/sticky bit set.

-t Tests if filehandle (STDIN by default) is opened to a tty.

-T -B File is a text/non-text (binary) file.-T and-B returntrue on a null
file, or a file at EOF when testing a filehandle.

-M -A -C File modification/access/inode-change time. Measured in days.
Value returned reflects the file age at the time the script started.
See also$ˆT in section ‘Special variables’.

18. File operations

Functions operating on a list of files return the number of files successfully
operated upon.

chmod LIST
Changes the permissions of a list of files. The first element of the list must
be the numerical mode.

chown LIST
Changes the owner and group of a list of files. The first two elements of the
list must be the numerical uid and gid.

truncate FILE, SIZE
truncatesFILE to SIZE. FILE may be a filename or a filehandle.

link OLDFILE, NEWFILE
Creates a new filename linked to the old filename.

lstat FILEy
Like stat , but does not traverse a final symbolic link.

mkdir DIR, MODE
Creates a directory with given permissions. Sets$! on failure.

readlink EXPRy

Returns the value of a symbolic link.

rename OLDNAME, NEWNAME
Changes the name of a file.

rmdir FILENAMEy
Deletes the directory if it is empty. Sets$! on failure.

16

stat FILEy
Returns a 13-element array (0:$dev, 1:$ino, 2:$mode, 3:$nlink, 4:$uid,
5:$gid, 6:$rdev, 7:$size, 8:$atime, 9:$mtime, 10:$ctime, 11:$blksize,
12:$blocks).FILE can be a filehandle, an expression evaluating to a
filename, or_ to refer to the last file test operation orstat call.
Returns an empty list if thestat fails.

symlink OLDFILE, NEWFILE
Creates a new filename symbolically linked to the old filename.

unlink LISTy
Deletes a list of files.

utime LIST
Changes the access and modification times. The first two elements of the list
must be the numerical access and modification times.

19. Input / Output

In input/output operations,FILEHANDLE may be a filehandle as opened by the
open operator, a pre-defined filehandle (e.g.STDOUT) or a scalar variable that
evaluates to a reference to or the name of a filehandle to be used.

<FILEHANDLE>
In scalar context: reads a single line from the file opened onFILEHANDLE.
In array context: reads the whole file.

< > Reads from the input stream formed by the files specified in@ARGV, or
standard input if no arguments were supplied.

binmode FILEHANDLE
Arranges for the file opened onFILEHANDLE to be read or written inbinary
mode as opposed totextmode (null-operation on UNIX).

close FILEHANDLE
Closes the file or pipe associated with the file handle.

dbmclose %HASH
Deprecated, useuntie instead.

dbmopen %HASH, DBMNAME, MODE
Deprecated, usetie instead.

eof FILEHANDLE
Returnstrue if the next read will return end of file, or if the file is not open.

eof Returns the eof status for the last file read.

eof() Indicates eof on the pseudo-file formed of the files listed on the command
line.

fcntl FILEHANDLE, FUNCTION, $VAR
Performsfcntl(2) on the file. This function has non-standard return values.

fileno FILEHANDLE
Returns the file descriptor for a given (open) file.

flock FILEHANDLE, OP
Calls a system-dependent locking routine on the file.OP is formed by
adding 1 (shared), 2 (exclusive), 4 (non-blocking) or 8 (unlock).

getc [FILEHANDLE]
Yields the next character from the file, or an empty string on eof.
If FILEHANDLE is omitted, reads fromSTDIN.

ioctl FILEHANDLE, FUNCTION, $VAR
Performsioctl(2) on the file. This function has non-standard return values.

17

open FILEHANDLE [, FILENAME]
Opens a file and associates it withFILEHANDLE. open returnstrue upon
success. IfFILENAME is omitted, uses the scalar variable of the same name
as theFILEHANDLE.

The following filename conventions apply when opening a file.

" FILE" openFILE for input. Also"< FILE" .

"> FILE" openFILE for output, creating it if necessary.

">> FILE" openFILE in append mode.

"+< FILE" open existingFILE with read/write access.

"+> FILE" create newFILE with read/write access.

"+>> FILE" read/write access in append mode.

"| CMD" opens a pipe to commandCMD; forks if CMD is ‘- ’.

" CMD|" opens a pipe from commandCMD; forks if CMD is ‘- ’.

FILE may be&FILEHND, in which case the new file handle is connected to
the (previously opened) filehandleFILEHND. If it is &=N, FILE will be
connected to the given file descriptor.

pipe READHANDLE, WRITEHANDLE
Returns a pair of connected pipes.

print [FILEHANDLE] [LISTy]
Prints the elements ofLIST, converting them to strings if needed. If
FILEHANDLE is omitted, prints by default to standard output (or to the last
selected output channel, seeselect).

printf [FILEHANDLE] [LISTy]
Equivalent toprint FILEHANDLE sprintf LIST.

read FILEHANDLE, $VAR, LENGTH [, OFFSET]
ReadsLENGTH binary bytes from the file into the variable atOFFSET.
Returns number of bytes actually read.

seek FILEHANDLE, POSITION, WHENCE
Arbitrarily positions the file. Returnstrue upon success.

select [FILEHANDLE]
Returns the currently selected filehandle. Sets the current default filehandle
for output operations ifFILEHANDLE is supplied.

select RBITS, WBITS, NBITS, TIMEOUT
Performs aselect(2) system call with the same parameters.

sprintf FORMAT, LIST
Returns a string formatted in the style ofprintf (3) conventions.

sysopen FILEHANDLE, PATH, MODE [, PERMS]
Performs anopen(2) system call. The possible values and flag bits ofMODE
are system-dependent; they are available via the standard moduleFcntl .

sysread FILEHANDLE, $VAR, LENGTH [, OFFSET]
ReadsLENGTH bytes into$VAR at OFFSET.

sysseek FILEHANDLE, POSITION, WHENCE
Performs aseek(2) system call.

syswrite FILEHANDLE, SCALAR, LENGTH [, OFFSET]
WritesLENGTH bytes fromSCALAR at OFFSET.

tell [FILEHANDLE]
Returns the current file position for the file. IfFILEHANDLE is omitted,
assumes the file last read.

18

20. Formats

formline PICTURE, LIST
FormatsLIST according toPICTURE and accumulates the result into$ˆA .

write [FILEHANDLE]
Writes a formatted record to the specified file, using the format associated
with that file.

Formats are defined as follows:

format [NAME] =
FORMLIST
.

FORMLIST pictures the lines, and contains the arguments which will give values to
the fields in the lines.NAME defaults toSTDOUTif omitted.
Picture fields are:

@<<<. . . left adjusted field, repeat the< to denote the desired width;
@>>>. . . right adjusted field;
@||| . . . centered field;
@#.##. . . numeric format with implied decimal point;
@* a multi-line field.

Useˆ instead of@for multi-line block filling.

Use˜ at the beginning of a line to suppress unwanted empty lines.

Use˜˜ at the beginning of a line to have this format line repeated until all fields
are exhausted.

Set$- to zero to force a page break on the nextwrite .

See also$ˆ , $˜ , $ˆA , $ˆF , $- and$= in section ‘Special variables’.

21. Directory reading routines

closedir DIRHANDLE
Closes a directory opened byopendir .

opendir DIRHANDLE, DIRNAME
Opens a directory on the handle specified.

readdir DIRHANDLE
Returns the next entry (or an array of entries) from the directory.

rewinddir DIRHANDLE
Positions the directory to the beginning.

seekdir DIRHANDLE, POS
Sets position forreaddir on the directory.

telldir DIRHANDLE
Returns the position in the directory.

22. System interaction

alarm EXPRy

Schedules aSIGALRMto be delivered afterEXPR seconds.

chdir [EXPR]
Changes the working directory.
Uses$ENV{"HOME"} or $ENV{"LOGNAME"} if EXPR is omitted.

19

chroot FILENAMEy
Changes the root directory for the process and its children.

die [LIST]
Prints the value ofLIST to STDERRand exits with the current value of$!
(errno). If$! is 0, exits with the value of($? >> 8) . If ($? >> 8) is
0, exits with 255.LIST defaults to"Died" .
Inside aneval , the error message is put into$@, and theeval is terminated
with undef; this makesdie the way to raise an exception.

exec LIST
Executes the system command inLIST; does not return.

exit [EXPR]
Exits immediately with the value ofEXPR, which defaults to0 (zero). Calls
ENDroutines and object destructors before exiting.

fork Does afork(2) system call. Returns the process ID of the child to the parent
process and zero to the child process.

getlogin
Returns the current login name as known by the system. If it returnsfalse,
usegetpwuid .

getpgrp [PID]
Returns the process group for processPID (0, or omitted, means the current
process).

getppid
Returns the process ID of the parent process.

getpriority WHICH, WHO
Returns the current priority for a process, process group, or user.

glob PATy
Returns a list of filenames that match the shell patternPAT.

kill LIST
Sends a signal to a list of processes. The first element of the list must be the
signal to send (either numeric, or its name as a string). Negative signals kill
process groups instead of processes.

setpgrp PID, PGRP
Sets the process group for thePID (0 indicates the current process).

setpriority WHICH, WHO, PRIO
Sets the current priority for a process, process group, or a user.

sleep [EXPR]
Causes the program to sleep forEXPR seconds, or forever if noEXPR.
Returns the number of seconds actually slept.

syscall LIST
Calls the system call specified in the first element of the list, passing the rest
of the list as arguments to the call.

system LIST
Does exactly the same thing asexec LIST except that a fork is done first,
and the parent process waits for the child process to complete. Returns the
exit status of the child process.

times
Returns a 4-element array (0:$user, 1:$system, 2:$cuser, 3:$csystem)
giving the user and system times, in seconds, for this process and the
children of this process.

20

umask [EXPR]
Sets the umask for the process and returns the old one. IfEXPR is omitted,
returns current umask value.

wait Waits for a child process to terminate and returns the process ID of the
deceased process (-1 if none). The status is returned in$?.

waitpid PID, FLAGS
Performs the same function as the corresponding system call.

warn [LIST]
Prints theLIST onSTDERRlike die , but does not exit.
LIST defaults to"Warning: something’s wrong" .

23. Networking

accept NEWSOCKET, GENERICSOCKET
Accepts a new socket.

bind SOCKET, NAME
Binds theNAME to theSOCKET.

connect SOCKET, NAME
Connects theNAME to theSOCKET.

getpeername SOCKET
Returns the socket address of the other end of theSOCKET.

getsockname SOCKET
Returns the name of the socket.

getsockopt SOCKET, LEVEL, OPTNAME
Returns the socket options.

listen SOCKET, QUEUESIZE
Starts listening on the specifiedSOCKET.

recv SOCKET, SCALAR, LENGTH, FLAGS
Receives a message onSOCKET.

send SOCKET, MSG, FLAGS [, TO]
Sends a message on theSOCKET.

setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL
Sets the requested socket option.

shutdown SOCKET, HOW
Shuts down aSOCKET.

socket SOCKET, DOMAIN, TYPE, PROTOCOL
Creates aSOCKET in DOMAIN with TYPE andPROTOCOL.

socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL
As socket, but creates a pair of bi-directional sockets.

24. SystemV IPC

Depending on your system configuration, certain system files need to berequire d
to access the message and semaphore specific facilities.

msgctl ID, CMD, ARGS
Callsmsgctl(2). If CMD is IPC_STAT thenARGS must be a single variable.
See the manual for details on the non-standard return values of this function.

21

msgget KEY, FLAGS
Creates a message queue forKEY. Returns the message queue identifier.

msgsnd ID, MSG, FLAGS
SendsMSG to queueID.

msgrcv ID, $VAR, SIZE, TYPE, FLAGS
Receives a message from queueID into VAR.

semctl ID, SEMNUM, CMD, ARG
Callssemctl(2).
If CMD is IPC_STAT or GETALLthenARG must be a variable.

semget KEY, NSEMS, SIZE, FLAGS
Creates a set of semaphores forKEY. Returns the message semaphore
identifier.

semop KEY, ...
Performs semaphore operations.

shmctl ID, CMD, ARG
Callsshmctl(2). If CMD is IPC_STAT thenARG must be a single variable.

shmget KEY, SIZE, FLAGS
Creates shared memory. Returns the shared memory segment identifier.

shmread ID, $VAR, POS, SIZE
Reads at mostSIZE bytes of the contents of shared memory segmentID
starting at offsetPOS into VAR.

shmwrite ID, STRING, POS, SIZE
Writes at mostSIZE bytes ofSTRING into the contents of shared memory
segmentID at offsetPOS.

25. Miscellaneous

defined EXPRy

Tests whether theEXPR has an actual value.

do FILENAME
ExecutesFILENAME as a Perl script. See alsorequire in section
‘Subroutines, packages and modules’.

dump [LABEL]
Immediate core dump. When reincarnated, starts atLABEL.

eval { EXPR; . . .}
Executes the code between{ and} . Traps run-time errors as described with
eval(EXPR), section ‘String functions’.

local VAR
Creates a scope forVAR local to the enclosing block, subroutine oreval .

my VAR
Creates a scope for the variable lexically local to the enclosing block,
subroutine oreval .

ref EXPRy

Returns atrue value ifEXPR is a reference. Returns the package name if
EXPR has been blessed into a package.

reset [EXPR]
Resets?? searches so that they work again.EXPR is a list of single letters.
All variables and arrays beginning with one of those letters are reset to their
pristine state. Only affects the current package.

22

scalar EXPR
Forces evaluation ofEXPR in scalar context.

undef [LVALUE]
Undefines theLVALUE. Always returns the undefined value.

wantarray
Returnstrue if the current context expects an list value.undef if the current
context does not expect a value at all,falseotherwise.

26. Information from system files

See the manual about return values in scalar context.

passwd
Returns ($name,$passwd,$uid, $gid, $quota,$comment,$gcos,$dir, $shell).

endpwent Ends look-up processing.

getpwent Gets next user information.

getpwnam NAME Gets information by name.

getpwuid UID Gets information by user ID.

setpwent Resets look-up processing.

group
Returns ($name,$passwd,$gid, $members).

endgrent Ends look-up processing.

getgrgid GID Gets information by group ID.

getgrnam NAME Gets information by name.

getgrent Gets next group information.

setgrent Resets lookup processing.

hosts
Returns ($name,$aliases,$addrtype,$length, @addrs).

endhostent Ends look-up processing.

gethostbyaddr ADDR, ADDRTYPE Gets information by IP address.

gethostbyname NAME Gets information by host name.

gethostent Gets next host information.

sethostent STAYOPEN Resets look-up processing.

networks
Returns ($name,$aliases,$addrtype,$net).

endnetent Ends look-up processing.

getnetbyaddr ADDR, TYPE Gets information by address and type.

getnetbyname NAME Gets information by network name.

getnetent Gets next network information.

setnetent STAYOPEN Resets look-up processing.

services
Returns ($name,$aliases,$port,$proto).

endservent Ends look-up processing.

getservbyname NAME, PROTO Gets information by service name.

getservbyport PORT, PROTO Gets information by service port.

getservent Gets next service information.

23

setservent STAYOPEN Resets look-up processing.

protocols
Returns ($name,$aliases,$proto).

endprotoent Ends look-up processing.

getprotobyname NAME Gets information by protocol name.

getprotobynumber NUMBER Gets information by protocol number.

getprotoent Gets next protocol information.

setprotoent STAYOPEN Resets look-up processing.

27. Special variables

The following variables are global and should be localized in subroutines:

$_ The default input and pattern-searching space.

$. The current input line number of the last filehandle that was read. Reset only
when the filehandle is closed explicitly.

$/ The input record separator, newline by default. May be multi-character.

$, The output field separator for the print operator.

$" The separator which joins elements of arrays interpolated in strings.

$\ The output record separator for the print operator.

$# The output format for printed numbers. Deprecated.

$* Set to 1 to do multiline matching within strings. Deprecated, see them ands
modifiers in section ‘Search and replace functions’.

$? The status returned by the last‘ . . .‘ command, pipeclose or system
operator.

$] The Perl version number, e.g.5.004 .

$[The index of the first element in an array, and of the first character in a
substring. Default is 0. Deprecated.

$; The subscript separator for multi-dimensional array emulation. Default is
"\034" .

$! If used in a numeric context, yields the current value oferrno . If used in a
string context, yields the corresponding error string.

$@ The Perl error message from the lasteval or do EXPR command.

$: The set of characters after which a string may be broken to fill continuation
fields (starting with ‘̂ ’) in a format.

$0 The name of the file containing the Perl script being executed. May be
assigned to.

$$ The process ID of the Perl interpreter running this script. Altered (in the
child process) byfork .

$< The real user ID of this process.

$> The effective user ID of this process.

$(The real group ID of this process.

$) The effective group ID and groups of this process.

$ˆA The accumulator forformline andwrite operations.

$ˆD The debug flags as passed to Perl using ‘-D ’.

$ˆE Extended error message on some platforms.

$ˆF The highest system file descriptor, ordinarily 2.

$ˆH Set of syntax checks enabled by ‘use strict ’.

24

$ˆI In-place edit extension as passed to Perl using ‘-i ’.

$ˆL Formfeed character used in formats.

$ˆM Out-of-memory emergency pool.

$ˆP Internal debugging flag.

$ˆT The time (as delivered bytime) when the program started. This value is used
by the file test operators ‘-M’, ‘ -A ’ and ‘-C ’.

$ˆW The value of the ‘-w ’ option as passed to Perl.

$ˆX The name by which this Perl interpreter was invoked.

The following variables are context dependent and need not be localized:

$% The current page number of the currently selected output channel.

$= The page length of the current output channel. Default is 60 lines.

$- The number of lines remaining on the page.

$˜ The name of the current report format.

$ˆ The name of the current top-of-page format.

$| If set to nonzero, forces a flush after every write or print on the output
channel currently selected. Default is 0.

$ARGVThe name of the current file when reading from< > .

The following variables are always local to the current block:

$& The string matched by the last successful pattern match.

$‘ The string preceding what was matched by the last successful match.

$’ The string following what was matched by the last successful match.

$+ The last bracket matched by the last search pattern.

$1. . .$9. . . Contain the subpatterns from the corresponding sets of parentheses in
the last pattern successfully matched.$10 and up are only available if the
match contained that many subpatterns.

28. Special arrays

@ARGVContains the command line arguments for the script (not including the
command name).

@EXPORT
Names the methods a package exports by default.

@EXPORT_OK
Names the methods a package can export upon explicit request.

@INC Contains the list of places to look for Perl scripts to be evaluated by the
do FILENAME, use andrequire commands.
Do not modify directly, but use the ‘use lib ’ pragma or-I command
line option instead.

@ISA List of base classes of a package.

@_ Parameter array for subroutines. Also used bysplit if not in array
context.

%ENV Contains the current environment.

%INC List of files that have been included withuse , require or do .

%SIG Used to set signal handlers for various signals.
_ _WARN_ _and_ _DIE_ _ are pseudo-signals to attach handlers to
Perl warnings and exceptions.

25

29. Standard modules

AnyDBM_File
Provides a framework for multiple dbm files.

AutoLoader
Load functions only on demand.

AutoSplit
Split a package for autoloading.

Benchmark
Benchmark running times of code.

CGI Web server Common Gateway Interface.

CGI::Apache
Support for Apache’s Perl module.

CGI::Carp
Log server errors with helpful context.

CGI::Fast
Support for FastCGI (persistent server process).

CGI::Push
Support for server push.

CGI::Switch
Simple interface for multiple server types.

CPAN
Interface to Comprehensive Perl Archive Network.

CPAN::FirstTime
Utility for creating CPAN configuration file.

CPAN::Nox
Run CPAN while avoiding compiled extensions.

Carp Warn of errors.

Class::Struct
Declare struct-like datatypes as Perl classes.

Config
Access to Perl configuration information.

Cwd Get the pathname of current working directory.

DB_File
Access to Berkeley DB files.

Devel::SelfStubber
Generate stubs for a SelfLoading module.

Dirhandle
Supplies object methods for directory handles.

DynaLoader
Dynamically loads C libraries into Perl code.

English
Use long English names for punctuation variables.

Env Imports environment variables.

Exporter
Implements default import method for modules.

ExtUtils::Embed
Utilities for embedding Perl in C/C++ applications.

26

ExtUtils::Install
Install files from here to there.

ExtUtils::Liblist
Determine libraries to use and how to use them.

ExtUtils::MakeMaker
Create an extension Makefile.

ExtUtils::Manifest
Utilities to write and check a MANIFEST file.

ExtUtils::Miniperl
Write the C code forperlmain.c .

ExtUtils::Mkbootstrap
Make a bootstrap file for use by DynaLoader.

ExtUtils::Mksymlists
Write linker options files for dynamic extension.

ExtUtils::MM_OS2
Methods to override Unix behaviour in ExtUtils::MakeMaker.

ExtUtils::MM_Unix
Methods used by ExtUtils::MakeMaker.

ExtUtils::MM_VMS
Methods to override Unix behaviour in ExtUtils::MakeMaker.

ExtUtils::testlib
Addsblib/* directories to@INC.

Fatal Replaces functions with equivalents which succeed or die.

Fcntl Loads the Cfcntl.h defines.

File::Basename
Parse file specifications.

FileCache
Keep more files open than the system permits.

File::CheckTree
Run many filetest checks on a tree.

File::Copy
Copy files or filehandles.

File::Find
Traverse a file tree.

FileHandle
Supplies object methods for filehandles.

File::Path
Create or remove a series of directories.

File::stat
By-name interface to Perl’s builtinstat .

FindBin
Locate the directory of the original Perl script.

GDBM_File
Access to the gdbm library.

Getopt::Long
Extended handling of command line options. Suits all needs.

Getopt::Std
Process single-character switches with switch clustering.

27

I18N::Collate
Compare 8-bit scalar data according to the current locale.

IO Loads various IO modules.

IO::File
Supplies object methods for filehandles.

IO::Handle
Supplies object methods for I/O handles.

IO::Pipe
Supplies object methods for pipes.

IO::Seekable
Supplies seek based methods for I/O objects.

IO::Select
Object interface to theselect system call.

IO::Socket
Object interface to socket communications.

IPC::Open2
Open a pipe to a process for both reading and writing.

IPC::Open3
Open a pipe to a process for reading, writing, and error handling.

Math::BigFloat
Arbitrary length float math package.

Math::BigInt
Arbitrary size integer math package.

Math::Complex
Complex numbers and associated mathematical functions.

Math::Trig
Trigoniometric functions.

NDBM_File
Tied access to ndbm files.

Net::hostent
By-name interface to Perl’s builtin gethost functions.

Net::netent
By-name interface to Perl’s builtin getnet functions.

Net::Ping
Check a host for upness.

Net::protoent
By-name interface to Perl’s builtin getproto functions.

Net::servent
By-name interface to Perl’s builtin getserv functions.

Opcode
Disable named opcodes when compiling Perl code.

Pod::Text
Convert POD data to formatted ASCII text.

POSIX
Interface to IEEE Std 1003.1.

Safe Compile and execute code in restricted compartments.

SDBM_File
Tied access to sdbm files.

28

Search::Dict
Search for key in dictionary file.

SelectSaver
Save and restore a selected file handle.

SelfLoader
Load functions only on demand.

Shell Run shell commands transparently within Perl.

Socket
Load the Csocket.h defines and structure manipulators.

Symbol
Manipulate Perl symbols and their names.

Sys::Hostname
Try every conceivable way to get the name of this system.

Sys::Syslog
Interface to the Unixsyslog(3) calls.

Term::Cap
Perl interface to Unixtermcap(3).

Term::Complete
Word completion module.

Term::ReadLine
Interface to various readline packages.

Test::Harness
Run Perl standard test scripts with statistics.

Text::Abbrev
Create an abbreviation table from a list.

Text::ParseWords
Parse text into an array of tokens.

Text::Soundex
Implementation of the Soundex Algorithm as described by Donald Knuth.

Text::Tabs
Expand and unexpand tabs.

Text::Wrap
Line wrapping to form simple paragraphs.

Tie::Hash
Base class definitions for tied hashes.

Tie::RefHash
Base class for tied hashes with references as keys.

Tie::StdHash
Basic methods for tied hashes.

Tie::Scalar
Base class definitions for tied scalars.

Tie::StdScalar
Basic methods for tied scalars.

Tie::SubstrHash
Fixed table-size, fixed key-length hashing.

Time::gmtime
By-name interface to Perl’s builtingmtime .

Time::Local
Efficiently compute time from local and GMT time.

29

Time::localtime
By-name interface to Perl’s builtinlocaltime .

Time::tm
Internal object for Time::gmtime and Time::localtime.

UNIVERSAL
Base class for all classes (blessed references).

User::grent
By-name interface to Perl’s builtin getgroup functions.

User::pwent
By-name interface to Perl’s builtin getpasswd functions.

30. Environment variables

Perl uses the following environment variables.

HOME Used ifchdir has no argument.

LOGDIR
Used ifchdir has no argument andHOMEis not set.

PATH Used in executing subprocesses, and in finding the Perl script if ‘-S ’ is
used.

PERL5LIB
A colon-separated list of directories to look in for Perl library files before
looking in the standard library and the current directory.

PERL5DB
The command to get the debugger code.
Defaults toBEGIN { require ’perl5db.pl’ } .

PERLLIB
Used instead ofPERL5LIB if the latter is not defined.

PERL5OPT
Used to set initial (command line) options for perl.

31. The perl debugger

The Perl symbolic debugger is invoked with ‘perl -d ’.

h Prints out a long help message.

h CMD Prints out help for the commandCMD.

h h Prints out a concise help message.

T Prints a stack trace.

s [EXPR] Single steps.

n [EXPR] Single steps around subroutine call.

RET Repeats last ‘s ’ or ‘ n’.

r Returns from the current subroutine.

c [LINE] Continues (untilLINE, or another breakpoint, or exit).

p EXPRy PrintsEXPR.

l [RANGE] Lists a range of lines.RANGE may be a number, start–end,
start+amount, or a subroutine name. IfRANGE is omitted, lists
next window.

w [LINE] Lists window around the specified line.

30

- Lists previous window.

. Returns to the executed line.

f FILE Switches toFILE and starts listing it.

l SUB Lists the named subroutine.

S [!]PATTERN Lists the names of all subroutines [not] matching the pattern.

/ PATTERN/ Searches forwards forPATTERN.

?PATTERN? Searches backwards forPATTERN.

b [LINE [CONDITION]]
Sets breakpoint atLINE, default is the current line.

b SUB [CONDITION]
Sets breakpoint at the named subroutine.

d [LINE] Deletes breakpoint at the given line.

D Deletes all breakpoints.

L Lists lines that have breakpoints or actions.

a [LINE] COMMAND
Sets an action for line.

A Deletes all line actions.

< COMMAND Sets an action to be executed before every debugger prompt.

> COMMAND Sets an action to be executed after every debugger prompt.

V [PACKAGE [PATTERN]]
Lists variables matchingPATTERN in a package. Default package
is main .

X [PATTERN] Like ‘ V’, but assumes the current package.

! [[-] NUMBER]
Re-executes a command. Default is the previous command.

! [PATTERN] Re-executes the last command that started withPATTERN.

!! [COMMAND]
RunsCOMMAND in a sub-process.

H [-NUMBER] Displays the last -NUMBER commands.

| CMD Runs debugger commandCMD through the current pager.

|| CMD Same, temporarilyselect sDB::OUT as well.

t Toggles trace mode.

t EXPR Traces through execution ofEXPR.

x EXPR EvalsEXPR in list context, dumps the result.

O[OPT [=VAL]]
Sets or queries values of debugger options.

= [ALIAS VALUE]
Sets alias, or lists current aliases.

R Restarts the debugger.

q Quits. You may also use yourEOF character.

COMMAND ExecutesCOMMAND as a Perl statement.

31

Perl Reference Guide Revision 5.004.1
c
1989,1997 Johan Vromans<jvromans@squirrel.nl>.

It may be reproduced, printed and distributed freely for non-profit purposes,
as long as the original author gets the credits, and the copyright notice is not
removed. It may not be turned into a commercial product except with written
permission of the author.
Perl is c
1987-1997 Larry Wall.
The camel as an image associated with Perl is a trademark of
O’Reilly & Associates, Inc. and is used with permission.

	1. Command line options
	2. Syntax
	3. Variables
	4. Literals
	5. Operators and precedence
	6. Statements
	7. Subroutines, packages and modules
	8. Pragmatic modules
	9. Object oriented programming
	10. Arithmetic functions
	11. Conversion functions
	12. Structure conversion
	13. String functions
	14. Array and hash functions
	15. Regular expressions
	16. Search and replace functions
	17. File test operators
	18. File operations
	19. Input / Output
	20. Formats
	21. Directory reading routines
	22. System interaction
	23. Networking
	24. SystemV IPC
	25. Miscellaneous
	26. Information from system files
	27. Special variables
	28. Special arrays
	29. Standard modules
	30. Environment variables
	31. The perl debugger

