PipeFitter: A SYSTEM FOR CONSTRUCTING PIPELINES

Gary Perlman
Lynn M. Snider

Department of Computer and Information Science
The Ohio State University, Columbus, Ohio, USA 43210
614-292-25%66
perlman(@cis.ohio-state.edu

ABSTRACT

PipeFitter provides users with a platform-independent
intuitive user interface to pipeline construction, thereby
increasing the ability of users to compose commands
that were previously the exclusive domain of experienced
users. It is designed to allow the economical (even
automatic) development of pipeline environments that
provide task-oriented helpwith ready-made applications.
Yet PipeFitter allows a high degree of customization if
it is needed. Dynamic feedback that coordinates
control-panel input with command-line input allows
multiple modes of specifying tool options. The direction
of dataflow in pipelines is specified by vertical
positioningof tool dialogues, and is further reinforced by
dynamic feedback during execution.

KEYWORDS Pipelines, Dataflow, Direct manipulation,
Graphical interaction, Gulf of evaluation and execution,
Model-based design, Portability, User interface
specification, Command language, Control panel
Computing reviews category:

H.5.2: User Interfaces - Interaction styles

A iy B iy c

Figure 1. Pipeline from program A to B to C.

INTRODUCTION

An Overview @ Pipelines

One of the most elegant and powerful features of UNIX
systems is the ability to construct complex pipelines from
simple tools. A pipeline is a sequence of commands in
which subsequent programs read data produced by
preceding programs. This is depicted in Figure 1 in
which the output from program A is directed to be the

input to program B, the output of which is made the
input to program C. Rather than create intermediate
files, a user constructs a pipeline command and the data
communication is handled by the system. Although
pipelines are usually associated with UNIX systems, they
are also part of DOS systems, and the concept of a
linear series of transformations is useful on any
computing system.

There are problems with pipelines. Although elegant in design,
our intuition is that pipelines are underutilized for
several reasons. A major factor is the large amount of
prerequisite knowledge needed for their construction.
First, a problem must be decomposed into subproblems
that are solvable by individual tools. This in turn
requires a good knowledge of the existence, purpose,
and basic functions of tools. This may not be easy,
because many tools are only useful in pipelines with
others, making incremental learning difficult. Then,
even after users know what tools to use, they must know
how to use the individual tools and the syntax of
pipelines to integrate them. For example, to run off
documents in the troff typesetting language, it would not
be an easy task for a novice to determine that the
correct pipeline for a specific document might be:
eqn myfile | pic | tbl } troff -me } lpr -Plw323

Experienced users can avoid memorizing such complex
incantations by saving them in files of commands, but
that requires the skillsto create parameterized functions.

pipelines are Useful and Sometimes Usable. With so many
impediments to overcome, it should not be surprising
that pipelines are underutilized. But, despite these
indications, we have good evidence that users with little
or no programming experience can and do construct
pipelines in UNIX and DOS environments. The | STAT
data analysis package [9] makes heavy use of pipelines
to connect data analysis tools, and these programs are
used in hundreds of universities for basic instruction.
We think people can readily adapt to the idea of
pipelines of statistical routines because statistics is a
natural application for pipelines in that analyses can

usually be viewed as a series of transformations followed
by graphical display, descriptive, and inferential statistics.
Hutchins et al [5] and Miller er al [6] both describe
graphical interfaces to pipelines of statistical commands,
and the S system for data analysis was originally based
on a model of pipelines, even though the user interface
was a functional command language {2]. A survey of
| STAT users showed that people used }STAT because
it was readily available on UNIX and DQOS, and that
analyses could be done quickly in a familiar
environment. However, most respondents complained
about having to recall how to use program options and
the difficulty of integrating programs into long pipelines.

Previous Pipeline Construction Systems

Several researchers have addressed the problem of
connecting simple tools to accomplish complex
operations. Hutchins et al [5] proposed a direct
manipulation interface to a statistical system. In it, users
would select data manipulation, analysis, and display
tools, and connect then to form larger analyses. In their
discussion, Hutchins e al argued that a direct
manipulation graphical interface could improve system
usability by reducing the articulatory and semantic
distances between users’ goals and the state of the
activity. In a model of stages of action, Norman [7] and
Hutchins et a/ [5] recommend reducing articulatory and
semantic distances in the gulfs of execution and
evaluation (see Table I). This model of interaction
suggests areas where system design can improve usability
— areas that might otherwise be overlooked without an
organizing model. Thiswork has been influential in the
development of systems for connecting tools. After a
discussion of relevant systems, we will discuss the design
of our system, PipeFitter, and how it addresses usability
and scalability concerns.

VSTAT [6] allows users to construct complex statistical
tools from basic ones by drawing dataflow diagrams.
Datasets are represented as objects and are connected
to the tools via input and output ports. Data and tools
are connected with data flowing from left to right on the
screen.

Squish [4] is a graphical shell for UNIX that lets users
select tools from a menu of commands with meaningful
descriptions. Users select tools and interact with
customdesignedcontrol panels to supply the parameters
to commands. The completed control panels are
arranged on the screen left-to-right to connect the tools.
The created command is shown in an editable window.

ConMan [3] supports interactive application construction
with a visual programming language that allows the
connection of multiple input/outputs among several
active processes. Like VSTAT, ConMan uses the
dataflow metaphor, but unlike VSTAT, the connections

among components are multidirectional, and are
designed for interactive control of active processes.

fsheil [1] is a visual UNIX shell that promotes a visual
programming language in which information processing
machines are arranged on a desktop. Machines are
depicted as icons, and inputs and outputs are objects
that can be dropped into machines for processing. When
a machine is activated, it prompts for a limited set of
parameters.

Common Themes and Unsolved Problems

In the systems described, there are several common
themes and some unsolved problems. These, along with
the work by Norman [7], have influenced our approach
to the design of PipeFitter.

Scalability. The first unsolved problem that we would like
to address is that of scalability, the ability to solve
realistically large problems (e.g., manage over 100 tools).
There are several dimensions of scalability:

The Effect of Scale on Usability. A system that
provides a good interface to a few tools may not provide
a good user interface to many tools. We would expect
all of the systems described to have increasing usability
problems as the number of tools increased, mainly
because they view all commands as part of a single set
and have no way af grouping sets of related commands.
Two systems described did not attempt to address this
problem: VSTAT was designed to only apply to one set
of related commands for statistics, and ConMan was
designed to develop interactive graphical controls. The
single menu of descriptive phrases in Squish and the
customdesigned icons in IShell would both develop
usability problems (e.g., visual search and identification)
as the number of tools increased.

The Effect of Scale on Development Costs. If a
system requires that existing work must be discarded, or
that a great deal of highly skilled work is needed, then
the acceptability of the development of a new system is
lowered. ldeally, existing tools (e.g., on UNIX) could be
used in a graphical environment with no changes to
those tools, and relatively low cost to provide an
improved interface. A common criticism of graphical
programming, particularly interactive graphical
programming such as programming-byexample, is that
the technique does not scale-up to larger systems. For
most of the systems discussed, it is necessary to modify
existing tools to provide a graphical interface; this would
necessarily hinder development. The notable exception
is Squish, that uses a separate specification to define the
interface to individual commands. All of the systems
(except IShell, which simply prompts for a limited set of
parameters) use control-panelsor ported-icons that are
customdesigned. This requirement makes it difficult to
add new functionality, and impedes the use of many

classic pipeline tools in a graphical environment because
of high developmentcosts. For simple tools (e.g., UNIX
wc, head, tail) or simple uses of moderately complex
tools (e.g., UNIX sxt), it is possible to automatically
generate control panels [10,11]. Arguably, custom
interfaces are needed for even limited subsets of some
functions (e.g.,, UNIX tools that take expressions as
parameters, such as grep, awk, and sed).

Stages of Action. Norman's [7] stages of action suggest a
series of problems — gulfs of execution and evaluation
— that users must bridge to act effectively. Although
the systems described above provide some help, there
are areas in which more help can be provided. The
follow areas move from the formation of goals, across
the gulf of execution, and over the gulf of evaluation.
Table | shows Norman's stages and the problems with
pipelines that occur at each stage. Later, we will discuss
how PipeFitter addresses each of those problems.

Task-Oriented Problem Decomposition. None of the systems
provide high-level task-oriented help with problem
decomposition by providing examples of how groups of
related commands can be integrated. To promote
system use, special-purpose toolkits (e.g., statistics, text
formatting, bibliography use), examples of their use
(existing pipelines), and descriptions of example
pipelines are all critical. Toolkits (or workbenches [8])
reduce the amount of knowledge required and reduces
the number of choices users must make. Initial
examples can be used as ready-made applications that
help users get started.

Tool Compatibility. None of the systems provide tool-
compatibility help by trying to determine if the output
format of one tool matches the input format for a
subsequent tool. On UNIX systems, most tools have few
requirements (e.g., textual ASCII input) but subsets of
programs have stricter input requirements (e.g,
tabular/numerical, special languages, bibliographic
records), which could be used to suggest relevant tools
or provide feedback to users.

Tod /fdentification. Most of the systems try to help users
identify tools to make them more recognizable than, for
example, standard UNIX names. Squish presents
meaningful phrases, VSTAT uses meaningful phrases to
annotate a few different types of icons, while 1Shell
presents a customdesigned icon for each tool (although
with uncertain identifiability). Descriptive phrases and
icons are useful to identify the purpose of tools, but
these aids may need to be customized for different
application areas because the same tool may have
different uses in different contexts.

Full Functionality. All of the systems provide a simplified
interface to handle parameters (options and operands),

in part because the parameters are presented in custom-
designed control panels, in input slots (which require
longer development time), or in serially presented
prompts (which could require extensive user interaction).
Simplified interfaces, however, preclude providing full
functionality, particularly to advanced users. It should
be possible to design a usable interface that still allows
full functionality for expert use.

Dual-Mode Command Composition. Only Squish presents the
constructed command to users and allows them to edit
it, however, the changes to the textual command are not
then reflected in the control panels. It is necessary to
provide dual-mode command composition, to allow
novices to see the command constructed, but also
importantly, to let experienced users supply options
directly to a command. Users should be able to change
the control panel and immediately see the changes in
textual commands and vice versa. Allowing textual input
of (or addition to) commands is particularly desirable if
the control panel interface is simplified, leaving some
parameters only available via the command line. To
allow such dual mode editing, it is necessary to have a
separate specification of parameters and their attributes;
users actions change the separate specifications through
the views and these changes are propagated back to
both control panel and textual views. This specification
is also useful for generating character-based and
graphical interfaces automatically [10], which is an
important issue of scalability.

Too/ Layout. The layout of tools in the display is one-
dimensional (left-to-right) for Squish, and two-
dimensional for the other systems, although in the case
of IShell, the 2D layout is unnecessary for one-
dimensional dataflow. For systems with multiple inputs
and outputs, the dataflow among tools can be confusing,
particularly for complex applications (e.g., ConMan can
have eight inputs and eight outputs per process).
Systems can and should simplify layout needs if only
simple dataflow is involved (i.e., pipelines).

Tod Connection. All of the systems (except Squish)
connect tools with directed lines. Based on the
experiences of Miller el ar with VSTAT, we think that
users might require training to learn how to connect the
tools; this is contrary to the basic design goal of making
it easy for users to construct pipelines. For one-
dimensionaldataflow, directed lines may be unnecessary.
Taken together, the issues of tool layout and connection
can be addressed simultaneously for pipelines. We think
that implicitly ordered connections by ordering tools
along a spatial dimension is intuitive. Squish's horizontal
layout (which matches pipeline command-line syntax)
makes it difficult to construct large pipelines. This
scaling problem makes us conclude that inferring

pipeline connections from vertical layout would be the
best solution, particularly if critical information is at the
top of tools.

Feedback. Only IShell specifically addresses the issue of
feedback of operationand dataflow by providing viewers
that can be attached to pipelines, and Borg also
discusses the potential use of animation to show active
dataflow. Based on experiences with a pipeline
monitoring program, io, we concluded that the feedback
provided by pipeline monitoring commands is useful. io
was written at UCSD around 1981 by the first author
and Don Norman. It allows the monitoring of the
percent or absolute amount of data processed, for each
tool in a pipeline. io also provides a file datapump for
the start of pipelines (similar to UNIX cat), a mid-
pipeline redirection facility (similar to UNIX tee),and a
data storage sink for the end of pipelines (with safe
overwrites of files). The functionality of io, along with
a viewer to examine the content of pipelines, should be
generic in any pipeline construction system, and should
be integrated into pipelines like other tools.

Design and Implementation Goals

Based on the discussion above, we developed specific

design and implementation goals for a pipeline

construction system. These were derived from two

general concerns: (1)to make it easy for users to create

and use pipelines; and (2) to make it possible to scale up

the development to include potentially hundreds of tools.

The concern for usability led to the following goals to:

o be easy to use by novice users;

o allow the reuse of pipelines over long periods;

o allow continued use by experts;

e provide good feedback of operations.

To be applicable to many tools, we constrained our

design to:

o require little or no modification of existing code;

o allow potentially automatic construction of control
panels (from code or independent specifications);

o be portable to many environments, graphical and
non-graphical, and to many hardware/operating
system platforms.

It was not our goal to fix UNIX. Pipelines are available
in other environments, such as DOS, and there are
several command shells available on Apple Macintosh
systems. Rather, we viewed the problem as one of
integrating, using, and reusing loosely coupled tools.

It was a goal to allow pipelines in a graphical user
interface because we wanted to make the capabilities of
pipelines and their component tools readily available in
graphical environments, such as the Apple Macintosh, in
which non-graphical interfaces would be rejected.

INPUT FILES
wildcards, file list

SEARCH FOR RECORDS
query-by-example interface

SORT RECORDS
list of fields to sort on, field types, reversal option

EXTRACT FIELDS
list of fields to (not) extract

FORMAT FIELDS
format template or file

OUTPUTTO FILE
output file and options

‘igure 2. A schema for form-based interface for
information retrieval.

M E DESIGN OF PipeFitter

PipeFitter is a system to reduce the articulatory and
semantic distances in the construction and monitoring of
pipelines of commands. The design of PipeFitter is
based on a metaphor of a form that is filled from top to
bottom, as is depicted in Figure 2. There are fields in
sections that correspond to parameters to individual
operations. An early design of a bibliographic retrieval
environmentfor [12] presented a form with the series of
transformations from input to search to sortto format to
display or output. Although the layout in Figure 2 was
thought to be adequate for many uses, there were other
tools (e.g., to add or merge fields) that were not
included, and there were realistic cases where the order
of operations might be different (e.g., fields might be
extracted before or after search). The desire for
flexibility of which commands were to be used and in
what order, led to a generalization of the form that
allows the construction of pipelines of any commands
(e.g., standard UNIX filters, data analysis programs [9]).
The idea that led to the design of PipeFitter was to cut
up the form into separate tools, while maintaining the
overall form-filling interface, and be able to construct
command sequences by making selections from toolKkits.

Table | is based on Norman's [7] seven stages of action
and the design questions that can be asked to help
improve usability at each stage. In Table I, we
summarize some of the problems that users would
encounterwith pipelines at each stage, and the way we
addressed each in the design of PipeFitter.

An example PipeFitter screen is shown in Figure 3. It

Table I. Stages, Problems, and Solutions

Stage of Activity (Design Questions)

Problems with Pipelines

PipeFitter Solutions

1 Forming the goal (Can the user
determine the function of the device?)

lack of problem decomposition
knowledge

pipeline descriptions identify
the purpose of pipelines

2 Forming the intention (Can the user tell
what actions are possible?)

lack of awareness the existence
of tools; unknown capabilities
and compatibility of tools;
obscurity of tool names

saved pipelines provide menus
of related commands with
descriptions of tools

3 Specifyingan action (Can the user
determine the mappings from intention
to physical movement?)

lack of knowledge of how to use, | familiar widgets; pipelines
combine, and run tools

constructed by positioning;
instructions in pipeline
descriptions

4 Executing the action (Can the user
perform the action?)
errors

typing errors, syntax errors, lack
of help on commands, data entry | interaction

control panels simplify

5 Perceiving the system/world state (Can

lack of fecdback of which tools
the user tell what state the system is in?) | are connected, which are active,
and what they are doing

tool position implies direction
of dataflow; active tool is
brought to foreground; viewers
can be inserted in pipeline

6 Interpreting the system state (Can the

state to interpreting the outcome?)

difficulty of looking at the
user determine the mapping from system | outputs/inputs of commands at
each point in the pipeline

pipeline viewers allow
examination of intermediate
steps; meters give feedback

7 Evaluating the outcome (Can the user
tell if the system is in the desired state?

lack of dynamic feedback of
effect of actions

command lines and control
panels are coordinated

contains a pipeline to search for, sort, and extract fields
from records in a database of bibliographic records, and
is based on a pipeline stored in the format shown in
Figure 4. Although PipeFitter is designed with a toolkit
philosophy, we thought that by providing canned
applications (i.e., stored pipelines) such as the one in
Figure 3, it would help users learn the tool-combination
concept, and if not, then at least users would have useful
applications. The availability of example pipelines
should increase users’ knowledge of tools and should
help them by providing examples of problem
decompositions known to be effective.

Figure 3 shows a pipeline of five tools. Two of the tools
are from a small set that are built in to PipeFitter: the
input tool, the viewer tool, the output tool, and the
generic tool. Pipelines are opened and saved from the
File selection in the menu bar. When a tool dialogue is
inserted from the Tools menu, it is placed on an implicit
diagonal grid; then the tool can be moved. The View
selection controls the arrangement of tool dialogues on
the screen (they can be automatically arranged along the
implicit grid) and the display of the pipeline description

(it can be displayed and edited at any time). The
Execute selection runs the current pipeline. Figure 3
shows the display immediately after opening the pipeline
file init.pip. Pipeline files are plain text that contain
three sections: (1) The description is placed at a user-
controlled X-Y coordinate, and may be displayed
automatically when the pipeline is opened; (2) The
commands section contains the X-Y locations of the
tools, along with any options for those tools; (3) The
tools section contains the names of all tools available to
build a new pipeline, and the descriptive phrases for the
tools in the pipeline. Figure 6 is an example of a saved
pipeline for another environment, the troff command in
the introduction to this paper.

When a pipeline is opened, the tool options are parsed
and propagated to the appropriate parts of the control
panels, and the tool dialogues are named and displayed
at the saved locations. The pipeline description can
contain instructions about how to execute the pipeline.
Toexecute the pipeline, users set parameters in the tool
dialogues and select Execute from the menu bar. The
tools are executed in the order of their vertical position.

& File Fdit Tools e Execute

) [Ihl: pipeline searches for records
——=—==1| 0N various topits. Make any
changes to the dislogues and select
K TliLnecute from the menu bar.

sssearch [T.K.Nﬂ]

sort Field

Figure 3. A PipeFitter display for a stored pipeline.

8Description -ece-emmmme oo
264 46 AUTO
This pipeline searches for records
on various topics. Make any
changes to the dialogues and select
Execute from the menu bar.
gcommands ------c-cmmcmmee oo
20 50 input *.bib
35 95 sssearch 7, K, x=
50 140 sssort -fA, D
65 185 ssextract -r -fP,C, M
80 230 viewer
@Tools(input output viewer generic)
ssadd Add Fields
ssextract Extract Fields

ssforder Order Fields
ssformat Format Fields
ssmerge Merge Fields
sssearch Search for Records
sssort Sort Fields

"igured4. Pipeline file for Figure 3.

Figure 5 shows the result of some editing on Figure 3:
some tool dialogues have been moved, a tool to order
fields has been inserted, parameters have been filled in,
and the pipeline has been executed. As the pipeline was
running, each tool’s dialogue was brought to the
foreground as it was activated; this provided feedback of
the state of the execution. Although the layout in
Figure 5 is hard to parse (it is that way to show parts of
control panels), it is easier to follow when you are the
one making the changes. It is always possible to have
PipeFitter reorganize the display so that the tool
dialogues follow the implicit grid. In Figure 5, parts of
the control panels for extract and orderare shown. The
one for field extraction is a custom dialogue that
presents more descriptive fields names for options and
a checkbox for exclusion of fields. As options are

o [B

| rprrii o

. changed in the control panel, the command line changes,

and vice versa. At the bottom of Figure 5 is the result of
the pipeline in the generic viewer tool, which can be
inserted anywhere in a pipeline. The viewer can save its
contents and it can stop the pipeline. :

Hile 1t lools Diew Execute

ip
T] es for records
ke any
S R s nes and select
sssearch [l.K.N-buMmgmnhy & Ai=petiman Ihu bar.

——}E;! Lrh !0' Re(l’fra;rii

Sort fields

" EntractFlelds

Flelds to Extroct: Selected:

Author [3] (Enciude Fietds [Publisher [0
Title Order Fields
Date o

paune | | [storder [0

Viewer

Selected:

e Ky
Buthor
Date

'7.1 The HC) Bibliegraphy Project
%A Gary Perlman

%D 1991

7d SIGCHI Bulletin

W0 23

%N 3

%P5 20 k

7K The HUI Bibliography pro ject has just released

[stop) o
Figure 5. A PipeFitter display after editing and
execution.

(sawe 05) (Tontinue)

g¢DESCription

265 50 AUTOmatic

This pipeline will let you run off
a manuscript file written in the
troff formatting language.

g COMMands

20 50 input

35 95 eqn

50 140 pic

65 185 thl

80 230 ptroff -me

95 265 Ipr -Plw323
€ TOOLs

ptroff Postscript Runoff
eqn Equation Processor
pic Picture Processor
tbl Table Processor
lpr Laser/Line-Printer

figure 6. A saved pipeline for the troff command.

IMPLEMENTATION OF PipeFitter

PipeFitter is implemented in C using the XVT
(Extensible Virtual Toolkit) library. XVT allows the
development of one system that is portable to many
graphical and non-graphical environments. The first
implementation of PipeFitter is on a Macintosh, where
tools were implemented as code resources.

Underneath the portable user interface of PipeFitter is
a portable application connection environment. UNIX-
compatible systems, with few exceptions, support

pipelines with memory buffers that are written by one
process and read by another. Such operating system
functions are not available on other systems, such as
DOS, Macintosh, or VMS . DOS implements pipelines
with temporary intermediate files, hidden from the user.
For environments like DOS and Macintosh, PipeFitter
creates temporary files and manages the execution of the
sequence of commands in pipelines. This has some
performance implications, but allows basic pipeline
functionality in all environments.

There are some user interface implications of allowing
pipelines on single-process systems like DOS and
Macintosh versus multi-processing systems like UNIX.
On systems like DOS and Macintosh, PipeFitter executes
commands in pipelines strictly sequentially, while on
UNIX systems, the processes can be concurrently active
and can begin to read input as soon as it is made
available by preceding processes. Therefore, the
feedback from an asynchronous pipeline is more
complex than that from a sequential pipeline. For
example, a sequence of commands might be 80%, 40%,
and 20% done on a UNIX system.

There are three strategies for the development of
control panels for tools. These trade off user expertise
against development cost.

1. Control panels are hand-rafted and may involve
iterative design. This strategy is used for tools that
have complex options that require help to supply
(e.g., a Boolean search expression). This strategy
requires a large investment of time and effort for
each command.

2. Control panels are generated automatically from
specifications of programs and their options.
Perlman [10] describes a system, setopt, for
generating textual and form-based user interfaces to
UNIX commands based on a specification of
commands and options. For each option, its single-
character flag, internal variable, brief description,
data type, default value, size (scalar or vector), range,
and implied actions, are specified in a tabular
format. From a database of option specifications, a
variety of user interfaces can be generated
automatically from code templates. We are
planning to investigate automatic intelligent layout
of the options based on an axiomatic model of
information presentation [11]. Thisstrategy requires
a minimal investment for each command, but it
cannot be used for all commands, and may require
more knowledge of commands and options by users.

3. A generic control panel allows users to supply a
command name and its arguments. This strategy
requires almost no investment for each command,
but requires detailed knowledge by users.

There is one notable exception to the coordination of
textual options and graphical specification of options.
Any options that are not known to the graphical option
specification manager are maintained at the end of the
textual option field, for use when the tool executes. This
makes it possible to design simplified user interfaces to
commands, yet still allow full use of options by
knowledgeable users.

CONCLUSIONS

PipeFitter was designed to help users span the gulfs of
executionand evaluationencounteredwhen constructing
pipelines of commands. The concept of a pipeline can
be conveyed intuitively, and supported by software, even
on systems with which pipelines are not ordinarily
associated. The obstacles of prerequisite knowledge
needed to construct pipelines can be bridged in simple
cases by providing canned applications that reduce the
use of typical pipelines to a task of form-filling.
Obstacles of construction of new pipelines can be
bridged by reducing the task to one of modification.
Dynamic feedback helps bridge the gulf of execution.

PipeFitter provides users with a platform-independent
intuitive user interface to pipeline construction, thereby
increasing the ability of users to compose commands
that were previously the exclusive domain of experienced
users. It is designed to allow the economical (even
automatic) development of pipeline environments that
provide task-oriented help with ready-made applications.
Yet PipeFitter allows a high degree of customization if
it is needed. Dynamic feedback that coordinates
control-panel input with command-line input allows
multiple modes of specifying tool options. The direction
of dataflow in pipelines is specified by vertical
positioning of tool dialogues, and is further reinforced by
dynamic feedback during execution.

Our current plans for PipeFitter are to complete the

port to other windowing environments (i.e., DOS and

UNIX) and to gather long-term feedback on its use,

particularly with statistical [9] and bibliographic [12]

applications. There are also several enhancements that

we discussed, but have not yet explored:

o better interface code generation from specifications;

o checking the compatibility of data formats between
tools based on specifications, and suggesting when
certain tools may be more or less appropriate;

o multiple percent-done/flow indicators attached to
tool dialogues that are executing in parallel;

o richer feedback about the state of tools (whether
they are reading, processing, or writing), what
resources they are using (e.g, CPU), and finer-
grained metering (e.g, number of records
processed), perhaps using sound;

o saving command histories for later reuse;

ACKNOWLEDGEMENTS

This work was funded in part by The Ohio State
Universityand Apple Computer,which in noway should
be taken as an endorsement of this work.

UNIX is a registered trademark of AT&T. VMS is a

trademark of Digital

Equipment

Macintosh is a registered trademark of Apple Computer.
XVT is a trademark of XVT.

REFERENCES

1.

Borg, K. 1Shell: A Visual UNIX Shell. In Proceedings of
CHI'%0 Conference on Human Factors in Computing
Systems, ACM, New York, 1990, pp. 201-207.

Becker, R. A. & Chambers., J. M. Design of the S
System for Data Analysis. Communications of the ACM,
27:5, pp. 486-495, 1984.

Haeberli, P. E. ConMan: A Visual Programming
Language for Interactive Graphics. In Proceedings of
SIGGRAPH’88 Conference on Computer Graphics,
Computer Graphics, 22:4, ACM, New York, 1988, pp.
103-111.

Henry, T. R. & Hudson, S. E. Squish: A Graphical Shell
for UNIX. In Proceedings of Graphics Interface *88,
1988, pp. 4349.

Hutchins, E. L, Hollan, J. D. & Norman, D. A. Direct
Manipulation Interfaces. In D. A. Norman & S. W.
Draper (Editors) User Centered System Design, 87-124,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

Corporation.

10.

11.

12.

Miller, J. R., Hill, W. C, McKendree, J., Masson, M. E.
J., Blumenthal, B., Terveen, L., & Zaback,J. The Role
of the System Image in Intelligent User Assistance, In
Proceedings of INTERACT'87, 885-890, 1987, North
Holland, Amsterdam.

Norman, D. A. Cognitive Engineering. In D. A. Norman
& S. W. Draper (Editors) User Centered System Design,
33-61, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

Perlman, G. MENUNIX: A Menu Interface to UNIX
Files and Programs. Proceedings of the 1982 Summer
USENIX Conference. USENIX Association, El Cerito,
California, 1982.

Perlman, G. & Horan, F. L. Report on UNIX{STAT
Release 5.1 Data Analysis Programs for UNIX and
MSDOS. Behavior Research Methods, Instruments, &
Computers, 182,168-176,1986.

Perlman, G. Multilingual Programming: Coordinating
Programs, User Interfaces, On-Line Help, and
Documentation. Proceedings of the ACM SIGDOC
Fourth International Conference on System
Documentation, 1986, pp. 123-129.

Perlman, G. An Axiomatic Model of Information
Presentation. Proceedings of the 31st Annual Human
Factors Society Meeting. Human Factors Society, Santa
Monica, CA, 1987, pp. 1229-1233.

Perlman, G. The HCI Bibliography Project.
SIGCIII Bulletin, 23:3, pp. 15-20, 1991.

ACM

